NATIONAL EDUCATION POLICY-2020

Syllabus for Sri Dev Suman Uttarakhand University, Badshahithaul, Tehri (Garhwal) and Affiliated Colleges

UG & PG PHYSICS SYLLABUS

2023

Sri Dev Suman Uttarakhand University Badshahithaul, Tehri (Garhwal)

Curriculum Design Committee, Uttarakhand

S. No.	Name & Designation	
	Prof. N.K. Joshi	Chairman
1.	Vice-Chancellor, Sridev Suman Uttarakhand University, New Tehri	
2.	Vice-Chancellor, Kumaun University, Nainital	Member
3.	Prof. Jagat Singh Bisht	Member
5.	Vice-Chancellor, Soban Singh Jeena University Almora	
4.	Prof. Surekha Dangwal	Member
4.	Vice-Chancellor, Doon University, Dehradun	
5.	Prof. O. P. S. Negi	Member
5.	Vice-Chancellor, Uttarakhand Open University, Haldwani	
6.	Prof. M.S.M. Rawat	Member
	Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	
7.	Prof. K. D. Purohit	Member
	Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	

Syllabus Preparation Committee

A: Department of Physics, Sri Dev Suman Uttarakhand University Pt. Lalit Mohan Sharma Campus, Rishikesh

S.N.	Name	Designation
1.	Dr. Yogesh Kumar Sharma	Professor & Head
2.	Dr. Manoj Yadav	Professor
3.	Dr. Bimal Prkash Bahuguna	Professor
4.	Dr. Hemant Singh	Associate Professor

B: Experts from Other Institutions

S. N.	Name	Designation and Address
1.	Prof. G. K. Dhingra	Dean. Faculty of Science, Pt. L.M.S. Campus Rishikesh
2.	Prof. L. P. Purohit	Professor, Department of Physics, Gurukula Kangri (Deemed to be) University Haridwar
3.	Prof. Pushpa Negi	Principal & Professor of Physics, Govt. P. G. College, New Tehri
4.	Prof. Pankaj Pant	Principal, Govt. P. G. College, Nagnath Pokhari
5.	Prof. Kuldeep Singh Negi	Principal, Govt. P. G. College, Khanpur
6.	Prof. Anita Rawat	Director, USERC, Dehradun

National Education Policy-2020

Syllabus for Sri Dev Suman Uttarakhand University and All Affiliated Colleges for B.Sc. in Physics.

2023

			st of Papers in Six Semesters (B.Sc.Degree) mester-wise Titles of the Papers in Physics		
Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
			Certificate Course in Basic Physics		
FIRST	Sem I	CPT1001	Mechanics	Theory	(04)
YEAR		CPP 1002	Mechanical Properties of Matter	Practical	(02)
	Sem II	CPT 1003	Electricity and Magnetism	Theory	(04)
		CPP 1004	Demonstrative Aspects of Electricity & Magnetism	Practical	(02)
			Diploma in Applied Physics		
	Sem III	DPT 2001	Thermodynamics and Statistical Physics	Theory	(04)
SECOND YEAR		DPP 2002	Demonstrative Aspects of Thermal Properties & Statistical Physics	Practical	(02)
	Sem IV	DPT 2003	Optics	Theory	(04)
		DPP 2004	Demonstrative Aspects of Geometrical and Physical Optics	Practical	(02)
	•	·	Bachelor of Science	·	
	Sem V	BPT3001	Solid State Physics	Theory	(04)
		BPP3002	Demonstrative Aspects of Solid State Physics	Practical	(02)
THIRD YEAR		BPT 3003	Basic Electronics	Theory	(04)
		BPP 3002	Demonstrative Aspects of Basic Electronics	Practical	(02)
	Sem VI	BPT 3003	Modern Physics & Elementary Quantum Mechanics	Theory	(04)
		BPP3004	Demonstrative Aspects of Modern Physics & Elementary Quantum Mechanics	Practical	(02)
		BPT 3005	Analog and Digital Electronics	Theory	(04)
		BPP 3006	Demonstrative Aspects of Analog & Digital Circuits	Practical	(02)

Subject prerequisites:

- For SemesterI:12thpass with subjects Physics, Chemistry & Mathematics
 For SemesterII: Passed Semester I with Physics
- 3. For SemesterIII: Passed Semester II with Certificate Course in Basic Physics
- 4. For SemesterIV: Passed Semester III
- 5. For SemesterV: Passed Semester IV with Diploma in Applied Physics
- 6. For SemesterVI: Passed SemesterV

Programme outcomes (POs):

Students having Degree in B.Sc. (with Physics) should have knowledge of different concepts and fundamentals of Physics and ability to apply this knowledge in various fields of academics and industry. They may pursue their future career in the field of academics, research and industry.

PO 1	1. Competence in the methods and techniques of calculations using Mechanics.
	2. Students are expected to have hands-on experience to apply the theoretical knowledge to solve practical problems.
PO2	1. Students are expected to have deep understanding of electricity and magnetism.
	2. Student should be able to make basic electrical circuits and handle electrical instruments.
PO 3	1. Competence in the concepts of Thermodynamics and Statistical Physics.
	2. Students are expected to have hands on experience in Thermal and Statistical Physics
	Experiments.
PO 4	1 Knowledge of different concepts in Geometrical and Physical Optics.
	2 Students are expected to have hands on experience of Experiments of Geometrical and
	Physical Optics.
PO 5	1. Knowledge of basic concepts of solid state physics with their applications.
	2. Students are expected to have an insight in handling in solid state and basic electronic
	instruments.
PO 6	1. Comprehensive knowledge of modern physics, elementary quantum mechanics,
	Analog & Digital electronics and their Applications.
	2. Learn the integrated approach to analog electronic circuitry and digital electronics for
	R&D.

Programme specific outcomes (PSOs): UG I Year / Certificate course in Basic Physics

After completing this certificate course, the student should have

- Acquired the basic knowledge of Mechanics, Electricity and Magnetism.
- Hands-on experience to apply the theoretical knowledge to solve practical problems of basic physical phenomena. He should be able to carry out experiments to understand the laws and concepts of Physics.
- An insight in understanding electrical circuits and in handling electrical instruments.

Programme specific outcomes (PSOs): UG II Year/ (Diploma in Applied Physics)

After completing this diploma course, the student should have

- Knowledge of different concepts in Thermodynamics, statistical physics, Geometrical and Physical Optics.
- Knowledge of different aspects of Thermal Physics and Statistical Mechanics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology
- of Engines and Refrigerators.
- A deeper insight in Ray Optics to understand the Physics of many optical instruments which are widely used in research and Industry, Optoelectronics, IT and communication devices, and in industrial instrumentation.

• Knowledge of basic concepts of optical instruments with their applications in technology.

	Programme specific outcomes (PSOs): UG III Year / Bachelor of Science					
After cor	npleting this degree course, the student should have:					
PSO 1	Knowledge of Mechanics and basic properties of matter. The course will empower him to apply his theoretical knowledge in various physical phenomena that occur in day to day life and he can use this scientific knowledge for the betterment of the society.					
PSO2	Understanding of basic concepts related to Electricity and Magnetism .He should be proficienct in designing and handling different electrical circuits					
PSO3	Expertise in different aspects of Thermal and Statistical Physics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators. <i>Proficient in the field of Optics which will increase his demand in research and industrial</i> <i>establishments engaged in activities involving optical instruments.</i>					
PSO4	Proficient in the field of Solid State Physics which will increase his demand in R & D.					
PSO5	Basic knowledge in the field of Modern physics and Quantum Mechanics which have utmost importance at both undergraduate and graduate level.					
PSO6	Comprehensive knowledge of Basic Electronics, Analog & Digital Principles and their Applications. Learn the integrated approach to analog electronic circuitry and digital electronics for R&D.					

							se Structur				Γ S)			
					X		Subject				,			
Type of Programme	Year	Sem	Paper I	Credit /hrs	Paper 2	Credit/ hrs	Paper 3	Credits /hrs	Paper 4	Cred its /hrs	Elective Paper	Credit s /hrs	Research Project	Credit/hrs
Certificate	e I	I	Mechanics (Theory)	4/60	Mechanical Properties of Matter (Lab)	2/60					EL1 (One	4/60		
		Π	Electricity and Magnetism (Theory)	4/60	Demonstrative Aspects of Electricity& Magnetism (Lab)	2/60					from the list) (04)			
Diploma	п	Ш	Thermodynamics and Statistical Physics (Theory)	4/60	Demonstrative Aspects of ThermalProperties of Matter and Statistical Physics (Lab)	2/60					EL2 (One from the	4/60		
		IV	Optics(Theory)	4/60	Demonstrative Aspects of Geometrical and Physical Optics (Lab)	2/60					list) (06)			
Bachelor of	ш	v	Solid State Physics(Theory)	4/60	Basic Electronics (Theory)	4/60	Demonstrative Aspects of Solid State Physics (Lab)	2/60	Demonstrative Aspects of Basic Electronics (Lab)	2/60			Industrial Training/Res earchProject	Qualifying
Science		VI	Modern Physics & Elementary Quantum Mechanics (Theory)	4/60	Analog and Digital Electronics (Theory)	4/60	Demonstrative Aspects of Modern Physics & Quantum Mechanics (Lab)	2/60	Demonstrative Aspects of Analog & Digital Circuits(Lab)	2/60			Industrial Training/Res earch Project	Qualifying

Programme	Certificate Course in Basic Physics Year: I Semest Paper-	
Subject: Ph	ysics	
Course Coo	le: Course Title: Mechanics	
Course Outc	omes	
I. Understand	ing of Vector Algebra and Vector Calculus.	
2. Understand	the physical interpretation of gradient, divergence and curl.	
3. Study of gra	avitational field and potential and understanding of Kepler's laws of Planetary mo	tion.
4. Understand	ding of different frames of references and conservation laws.	
	d the dynamics of rigid body and concept of moment of inertia. Study of moment distance and its applications.	of inertia o
6. Study the elastic deformed	properties of matter, response of the classical systems to external forces and mation and its applications.	their
7. Comprehe applications	and the dynamics of Fluid and concept of viscosity and surface tension along with .	ı its
Credits: 04	Core Compulsor	у
Max. Marks External Exa Internal Ass	am: 75	orks: 33
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lecture
Unit I	Vectors Algebra Vector algebra. Scalar and vector products, scalar and vector triple products Derivative of a vector with respect to a parameter, Del operator, gradient divergence and curl, Gauss divergence theorem, Stokes curl theorem and Green's theorem, Line, surface and volume integral of a vector function.	10
Unit II	Gravitation field and potential Gravitational field and potential, Gravitational potential energy, Gravitational field Intensity and potential due to a ring, a spherical shell, solid sphere and	

Unit III	Conservation Laws	
	Frames of reference, Concept of inertial and Non-inertial frames of references	
	Work energy theorem, Conservative and non-Conservative forces, Linear	
	restoring force, Gradient of potential, Conservation of energy for the particle	15
	Energy function, Concept of Centre of mass, Angular momentum and torque	
	Laws of conservation of total energy, total linear momentum and total angular	
	momentum along with their examples.	
Unit IV	Dynamics of rigid body and Moment of Inertia	
	Translatory and Rotatory motion, Equation of motion for Rotating rigid body,	
	angular momentum vector and moment of inertia, Theorem of parallel and	10
	perpendicular axes, Moment of inertia of a cylinder, rod, lamina, ring, disc,	10
	spherical shell, solid sphere, kinetic energy of rotation, rolling along a slope,	
	Application to compound pendulum.	
Unit V	Properties of Matter	
	Basic concept, Elastic constants and their Interrelations, torsion of cylinder,	
	bending of beam, bending moment, Cantilever, shape of Girders/ rail tracks.	15
	Viscosity, Stokes's law, Posieuille's formula, Equation of continuity,	
	Bernoulli's theorem, Surface tension and its molecular interpretation.	
Suggested	Reading	
1.R. Resnie	ck and D. Hilliday : Physics Vol-I	
2.Berkeley	Physics Course : Mechanics Vol-I	
3.R.P. Feyn	nman, R.B.Lightan and M.Sand : The Feynman Lectures in Physics	
4.D.S. Mat	hur : Mechanics	
	hur : Elements of Properties of Matter	
6. Murray S	piegel, Seymour Lipschutz, Dennis Spellman, "Schaum's Outline Series: Vector	
•	McGraw Hill, 2017.	
7. J. C. Up	adhaya: Mechanics, S. Chand	
Suggested	Online Link:	
1. MIT Op	en Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/	
2. National	Programme on Technology Enhanced Learning (NPTEL),	
https://www	w.youtube.com/user/nptelhrd	
3. Swayam	Prabha - DTH Channel,	
https://www	v.swayamprabha.gov.in/index.php/program/current_he/8	
This cours	e can be opted as an elective by the students of following subjects: The course ca	ın
be opted as	an elective, which is open to all students.	
	Continuous Evaluation (25 Marks):	
Continuou	s internal evaluation shall be based on allotted assignment and class tests. The marks	

shall be as follows:

Class Test/Assignment/ attendance- (10+10+5) Course Prerequisites: Physics and Mathematics in 12th

Programme:	Certificate Course in Basic Physics	Year: I	Semester: I Practical (Lab)
Subject: Phys	ics Practical (Lab)		
Course Code	Course Title: Mechanical Properties of Matter (Lab)		
Course Outco	mes:		
1. Experimenta	l physics has the most striking impact on the industry whereve	r the instrume	nts are used
to study and	determine the mechanical properties.		
2. Measureme	nt precision and perfection is achieved through Lab Experimen	its.	
Credits: 02		Core Compu	lsory
Max. Marks:	50	-	·
	ord File): 15 tical Exam: 20	Min. Passing	, IVIATKS: 17
External Prac External Viva	tical Exam: 20 Voce : 15		
Total No. of I	ectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Торіс		No. of Lecture
	Lab Experiment List		
	1. To study the Motion of Spring and calculate (a) Sprin	ng constant. (b))
	g and (c) Modulus of rigidity.	0 , (,
	2. To determine the Moment of Inertia of a Flywheel.		
	3. To determine g and velocity for a freely falling bod	y using Digita	ıl
	Timing Technique.		(0)
	4. To determine Coefficient of Viscosity of water by	Capillary Flov	_w 60
	Method (Poiseuille's method).		
	5. To determine the Young's Modulus of a Wire by	Optical Lever	
	Method.		
	6. To determine the Young's Modulus by bending of bea		,
		by Maxwell	
	7. To determine the Modulus of Rigidity of a Wire	•	,
	needle. To determine the elastic Constants of a w	•	?
	needle. To determine the elastic Constants of a w method.	•	?
	needle. To determine the elastic Constants of a w method.8. To determine the value of g using Bar Pendulum.	•	' .
	needle. To determine the elastic Constants of a w method.8. To determine the value of g using Bar Pendulum.9. To determine the value of g using Kater's Pendulum.	•	2
	 needle. To determine the elastic Constants of a w method. 8. To determine the value of g using Bar Pendulum. 9. To determine the value of g using Kater's Pendulum. 10. To determine Surface Tension. 	ire by Searle	
	needle. To determine the elastic Constants of a w method.8. To determine the value of g using Bar Pendulum.9. To determine the value of g using Kater's Pendulum.	ire by Searle	

1. M. Yadav, Practical Physics, Vol 1, KedarNath Ramnath Publication, 2023.

2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
 Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on attendance of student in Lab and presentation of practical in the record file. The marks shall be as follows **Record File (15 marks)**

PREREQUISITE: Opted / Passed Semester I, Theory Paper-1

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

Programm	e:Certificate Course in Basic Physics		V	emester:1 /ocational/ /linor
	Subject:Pl	hysics		
Course C	ode: CourseTitle: Basic Instrument	ation Skills-I		
Credits:03		(Ex	cational/Min periments/ha ning)	or inds on
Max. Marł External E Internal As		Min	n.PassingMa	orks:33
Fotal No. o	f Lectures-Tutorials-Practical (in hours per we	ek):3-0-0		
Unit	Торіс			No. of Lecture
UnitI	Errors and Mechanical Tools: Instruments accuracy, precision, sensitivity, redifferent instruments, Errors in measurements, Typuses: Identification, specifications, uses and mainten Tweezers Screwdriver (Combination Set), Pliers, Crimping Tools, Sockets & Hex drivers, Clamp Drill Machine, Small Hand Saws.	pes of errors. Hand hance of commonly u Wire Cutters, W	tools and the used hand tool ire Stripper	ir 15 s: s,
UnitII	Electrical & Electronics Cables and Connector Different type of electrical cables and their Sp cables, Standard wire gauge (SWG), Practice of Testing phase, neutral and Earth by tester and multi-	on different type	of cable join	
UnitII	I Domestic Wiring Introduction and explanation of electrical wiring Capping, house wiring, specification and types, r & Practice on connecting common electrical ac them in series board., Testing & replacement of di plug, sockets. Identification of different wiring Removing of insulation from assorted wires and cal electrical accessories, Making Extension board.	ating & material, ccessories in circu fferen1 types of fu materials and thei	Demonstration its and testing uses, switcher r specification	20 ng s, n,

- 2. S. Salivahanan& N. S. Kumar: Electronic Devices and Circuits 3rd Edn
- 3. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.
- 4. M. Lotia, Modem Basic Electrical & House Wiring Servicing

Suggested OnlineLink:

1. MITOpenLearning-MassachusettsInstituteofTechnology,https://openlearning.mit.edu/

2. NationalProgrammeonTechnologyEnhancedLearning(NPTEL),https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel, https:// www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTI	FICATE COURSE IN BASIC PHYSICS		
Programme: (Certificate Course in Basic Physics	Year: I	Semester:] Paper-I
	Subject: Physics		_
Course Code:	Course Title: Electricity and Magnetism		
Course Outco	mes:		
Understandir	ng of Electric Field and Potential. Evaluation of Electric Field and Po	tential for d	lifferent
ypes of charge	e distributions.		
2. Study of Elec	ctric and Magnetic Fields in matter. Understand the concept of polarized	zability, Ma	gnetization
and Electric Di	isplacement Vector.		
3. Study of Stea	dy and Varying electric currents.		
4. Understandi	ng of different aspects of alternating currents and its applications.		
5. Understand	the Magnetostatics, Lorentz Force and Energy stored in magnetic Fie	ld.	
6. Comprehend	the different aspects of Electromagnetic induction and its application	ns.	
Credits: 04	Core	Compulsor	y
Max. Marks:	100 Min 1	Passing Ma	arks. 33
External Exai	n: 75		11 NS+ 50
Internal Asses	ectures-Tutorials-Practical (in hours per week): 4-0-0		
Unit	Торіс		No. of Lectures
Unit I	Electric field and potential		
	Coulomb law, Gauss' theory, its integral and differential forms, line	e integral o	1
	Electric field, Electric field and potential due to an arbitra	ary charg	15
	distribution. Electrostatic energy, energy stored in an Electric fie		
	field and potential due to long charged wire, Spherical shell, sp	ohere, disc,	
	dipole.		
Unit II	Electric and Magnetic fields in Matter		
	Moments of charge distributions, Polar and non-polar molecule,	•	
	vector, electric displacement vector, three electric vectors,		15
	susceptibility and permittivity, polarizability, Clausius-Mosso		1
	Magnetization, magnetic susceptibility, diamagnetic, parama	-	
	ferromagnetic substances, Hysteresis and B-H curve, Langevin's		-
T T 1 / T T	Diamagnetism and paramagnetism, Weiss theory of ferromagnetism		
Unit III	Electric Currents (Steady and Varying)		
	Current density, Equation of Continuity, Ohm's law and		
	conductivity, Lorentz Drude theory, Wiedmann-Frenz law, Kirch		10
	Laws and their applications, Transient current, Growth and decay of		
	- R and L - C circuits, charging and discharging of a capacitor	through a	l
	resistance		

Unit IV	Magnetostatics	
	Lorentz force, Bio-Savert's law, Ampere's law, Application of Biot-Saver	10
	law, magnetic field due steady current in a long straight wire, Interaction	
	between two wires, field due a Helmholtz coil, solenoid and current loop,	
	magnetic vector potential, permeability, Energy stored in Magnetic field.	
Unit V	Electromagnetic Induction and Alternating Current	
	Faraday's laws of induction, Lenz's law, Electromotive force, Measurement of	
	magnetic field, Eddy current, Mutual inductance, Self-inductance. Impedance	10
	admittance and reactance, R-C, R-L and L-C circuits with alternating e.m.f.	
	source, series and parallel L-C-R circuits, resonance and sharpness, Quality	
	factor, Power in A. C. circuits, Choke coil.	

- 1. Edward M. Purcell : Electricity and Magnetism
- 2. J.H. Fewkes & J.Yarwood : Electricity & Magnetism, Vol. I
- 3. D C Tayal : Electricity and Magnetism ", Himalaya Publishing House Pvt. Ltd., 2019.
- 4. D.J.Griffiths : Introduction to Electrodynamics .
- 5. Lal and Ahmed : Electricity and Magnetism
- **6.** H. K. Malik and A.K. Singh "Engineering Physics", McGraw Hill Education (India) Private Limited, 2018.
- **7.** Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics Vol. 2", Pearson Education Limited, 2012.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Passed semester I, theory paper-1

CER	TIFICATE COURSE IN BASIC PHYSICS		
Programme	e: Certificate Course in Basic Physics]	Semester: II Practical Lab)
	Subject: Physics Practical (Lab)		<u> </u>
Course Co	ode: Course Title: Demonstrative Aspects of Electricity & Magnet	tism (Practical)	
Course Out	comes:		
1 Exporim	ental physics has the most striking impact on the industry wherever	the instruments of	rausad to
-	I determine the electric and magnetic properties.	the instruments a	ire used to
	nent precision and perfection is achieved through Lab Experiments	_	
Credits: 02		ore Compulsory	
Max. Mark			
	ecord File): 15 actical Exam: 20	in. Passing Mar	KS; 17
External Pr External Vi	actical Exam: 20 va Voce : 15		
	f Lectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Торіс		No. of
	*		Lectures
	Lab Experiment List		
	1. Frequency of A.C. Mains.		
	2. Calibration of Voltmeter by potentiometer.		
	3. Calibration of ammeter by potentiometer.		
	4. Specific resistance determination.		
	5. Conversion of a Galvanometer into a Voltmeter.		
	6. Conversion of a Galvanometer into Ammeter.		60
	7. Variation of magnetic field along the axis of a current carry	ing circular coil.	
	8. Comparison of capacities by Ballistic Galvanometer.		
	9. Determination of Ballistic Constant.		
	10. Electrochemical equivalent.		
	11. De Sauty's bridge- C1/ C2		
	12. R1/R2 by potentiometer.		
	13. Study of R-C, L-C-R circuits.		
	14. Determination of self inductance, mutual inductance.	1	
	15. Magnetic field determination by search coil and ballistic ga	alvanometer.	

1. M. Yadav, Practical Physics, Vol 1, KedarNath Ramnath Publication, 2023.

2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester I

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

CERT	TIFICATECOURSEINBASICPHYSICS			
Programme	e:Certificate Course in Basic Physics	Year: I	Semester Vocation	r: II nal/Minor
	Subject:Physics	5		
Course Co	ode: CourseTitle: Basic Instrum	entation Skills	-II	
Credits:03		Vocatio (Experin training	nents/hand	ls on
Max.Marks ExternalExa InternalAss	am:75	Min.Pas	singMarks	5:33
TotalNo.ofI	Lectures-Tutorials-Practical (inhoursperweek):3-0-0			
Unit	Торіс			No. of Lectures
UnitI	Batteries and Maintenance: Types of Batteries, Prin Cell, Wet charged, Dry-charged, Low maintenance, C Cover plates, Separator, Cells, Electrolyte, Principles battery, Electrochemical reaction, Measure the voltag using analog/ digital multimeter, Charge and discharg resistor, Maintain the secondary cells, Measure the sp	Construction of Ba of Batteries, Leac ges of the given ce ge the battery throu	ttery, Case l Acid lls/battery	20
UnitII	gravity of the electrolyte using hydrometer. Testing of Batteries: Testing Factor affecting charging, Cause of bat testing, visual inspection, Heavy load test Profes verify whether the battery is ready for use of needs	ssional, Test a b		
UnitIII	Soldering: Solders, flux and soldering technique. Different types Temperature and wattages, types of tips, Solder mater of flux and other materials, Selection of soldering gun Soldering and De-soldering stations and their specific soldering and Various Switches, Practice soldering of electronic components, small transformer, Practice de	rials and their grac n for specific requi cations. Soldering/ n differeni	ling. Use irement,	15

- 1. B L Theraja: A text book in Electrical Technology
- 2. M G Say: Performance and design of AC machines
- 3. S. Salivahanan& N. S. Kumar: Electronic Devices and Circuits, , 3rd Edn

4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.

5. M. Lotia, Modern Basic Electrical & House Wiring Servicing

Suggested OnlineLink:

- 1. MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning
- (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Minor/Elective (04 Credit, One from the list El 1) Students having major in Physics will have to choose the elective/minor from sl. no. 1-4 only. Other faculty students (Arts/Commerce) have to choice sl. no. 1.

- 1. Elementary Physics-I
- 2. Numerical Methods
- 3. Computer Programming
- 4. Waves and Oscillations

	CERTIFICATE COURSE IN BASIC PHY	SICS		
Programm	ne: Certificate Course in Basic Physics			Semester: I/II
	Subject: Physic	cs		
CourseCo	de: CourseTitle: Elementary Pl	nysics-I		
Credits:04			Vocational/Mind ents/hands on tra	or(Experim nining)
Max.Marks External Ex Internal As			Min.PassingMa	rks:33
Total No.of	Lectures-Tutorials-Practical (in hours per week):4-0-0		
Unit	Торіс			No. of Lectures
Unit I	Basic Idea of Physics and it's uses in daily life Insulators and Semiconductors, Coulomb's law, Qu charge, Basic Idea of electric field		0	
Unit II	Resistance, Resistance in Series and Parallel, Di Color codes for Resistors, Household Circuits, Wi fuse, Power and Power Losses, Unit of power lo current, Uses of heating effect of current.	iring in Hou	ses, Importance of	f
	Transformers, Types of transformers, Step up trans Auto transformer, Central tape transformer, Wiring			10
Unit IV	Short and open circuits, Shorts in series circuit, shor series circuit, Open in parallel circuit, Duality in series a	-	· •	10

Unit V Ammeters- Voltmeters and their uses, Measurements of thickness, Diameter and depth by Vernier- calipers Screw gauge and Spherometer, Multimeter and its uses, Dynamometer and Wattmeter, Block diagram of basic CRO, Construction of CRT, Electron gun, electrostatic focusing and acceleration.	10
--	----

- 1. Physics: Rowell and Herbert, Cambridge University Press,
- 2. Electrical Technology : B. L. Theraja, S. Chand & company.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

 Programme: Certificate Course in Basic Physics
 Year: I Semester: I/II

 Subject: Physics
 Course Code:

 Course Code:
 Course Title: Numerical Methods

Credits: 04	Minor/Elective	
lax. Marks External Exa nternal Ass		rks: 33
otal No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lecture
Unit I	Ordinary Differential Equations Brief review of ordinary differential equations, Exact equations, Equations reducible to exact equations, Equations of the first order and higher degrees. Clairaut's equation. Applications of ODEs in concerned engineering branch Linear differential equations with constant co-efficient, Complimentary functions and particular integral, Method of variation of parameters, Equations reducible to linear equations with constant co-efficient (Cauchy's and Legendre's linear equations), Initial and Boundary value problems Simultaneous linear equations with constant co-efficient, Applications of differential equations in concerned engineering branch.	15
Unit II	 Partial Differential Equations Formulation of Partial Differential Equations (PDE), Solution of PDE, Linear PDE of First Order (Lagrange's Linear Equation), Non-linear Equation of First Order (Standard Forms), Charpit's Method, Homogeneous Linear Equations with Constant Coefficients, Non-homogeneous Linear Equations. Applications of PDE: Method of separation of variables, Solution of one dimensional wave and heat equation and two dimensional Laplace's equation. 	15
Unit III	Transforms Theory Laplace Transform: Laplace Transforms of standard functions and their properties, Inverse Laplace Transforms, General Properties of inverse Laplace transforms and Convolution Theorem, Laplace Transforms of periodic functions, Dirac-delta Function, Heaviside's Unit Function, Solution of ODE	15

	and linear simultaneous differential equations using Laplace transforms Fourier Transform: Fourier integral representation, Fourier sine, cosine and complex transform, Finite Fourier Transforms and their applications. Z – Transforms: Z–Transforms & its properties, inversion of Z – transform and applications of Z – transform	
Unit IV	Probability and Statistics Review of probability, Conditional probability and sampling theorems, Discrete and Continuous Probability Distribution, Probability Mass & Probability Density Functions, Distribution function, Discrete and Continuous probability distributions, Binomial, Poisson and Normal distributions.	

1. Advanced Engineering Mathematics by E. Kreyszig, John Wiley and Sons, NC, New York.

- 2. Differential Equations by S. L. Ross, John Wiley & Sons, New York.
- 3. An Introduction to Probability Theory & its Applications by W. Feller, Wiley.

4. Probability and Statistics for Engineers and Scientists by R.E. Walpole, S. L. Myers and K. Ye, Pearson.

5. Integral Transforms and Their Applications by Lokenath Dennath and Dambaru Bhatta, Chapman and Hall/CRC Press.

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics

Year: I Semester: I/II

Subject: Physics

Course Code:

Course Title: Computer Programming

Credits: 04	Minor/Elective	
lax. Marks: xternal Exa nternal Asse	m: 75	rks: 33
otal No. of I	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lecture
Unit I	Programming Fundamentals Introduction to computer, block diagram and organization of computer, number system and binary arithmetic, processing data, hardware, software, firmware, types of programming language -Machine language, Assembly level language, higher level language, source file, object file, translator-assembler, compiler, interpreter. Evolution and classification of programming languages.	15
Unit II	 Programming Techniques Steps in program development, algorithm, flowchart, pseudo code. C Language: 'C' character set, literals, keywords, identifiers, data types and size, variable declaration, expression, labels, statements, formatted input output statements, types of operators, data type conversion, mixed mode arithmetics, control structures. 	15
Unit III	Data Structures Storage classes, scope rules and visibility, arrays, pointers, dynamic storage allocation, structures and unions, self-referential structures. Relationship between pointers and arrays, dynamic arrays: Introduction to dynamic data structures linked lists, stack, and binary trees.	15
Unit IV	Functions and File Handling 'C' functions, library functions, parameter passing, recursion, 'C' files function for file handling, 'C' pre-processors and command line arguments macros and conditional compiler directives.	15

1. C Programming Language by Briain W. Kenigham and Dennis Ritchie, Prentice Hall of India.

2. Programming with C by Byron Gottfried, Tata McGraw Hill.

3. The Complete Reference C by Herbert Schildt, Tata McGraw Hill.

4. Let us C by Yashwant Kanetkar, BPB Publication.

5. A Structured Programming Approach in C by B.A. Forouzan and R.F. Gilberg, Cengage Learning.

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics

Subject: Physics

Course Code:

Course Title: Waves and Oscillations

edits: 04	Minor/Elective	
	essment: 25	
tal No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lecture
Unit I	Analysis of wave motion	
	Characteristics, Differential equation of a wave motion, principle of	15
	superposition, Interference, Beats, stationary waves, Energy of stationary	
	waves, Wave velocity and group velocity, Fourier theorem, Fourier analysis of	
	square, triangular and saw-tooth waves. Energy density of plane acoustic	
	waves, Acoustic intensity, Measurement of acoustic intensity - the dB scale	
	Characteristics and loudness of Musical sound, Acoustic impedance	
	Reflection and transmission of acoustic waves. Acoustics of buildings,	
	reverberation time, Sabine's formula, Principle of sonar system.	
Unit II	Ultrasonics	1.5
	Classification of Sound waves, Ultrasonics, Quartz crystal and Piezo electric	15
	effect, Magnetostriction effect, Properties of Ultrasonic, Detection of ultrasonic	
	waves, Determination of velocity of ultrasonic waves in liquid (Acoustic	
	grating method) . Application of Ultrasonics.	
Unit III	F	15
	Periodic motion, SHM in mechanical systems, Energy of Simple harmonic	15
	oscillator, Superposition of SHM(s), Oscillations of two masses connected by a	
	spring, Non-linear (An-harmonic) oscillator and its applications to simple	
	pendulum. Applications of Simple harmonic motion in compound pendulum	
	Torsional pendulum and LC circuit, Composition of two SHM(s) of different frequency ratio Liggnious' figures for equal frequencies ratio and 2:1	
	frequency ratio, Lissajous' figures for equal frequencies ratio and 2:1	
Unit IV	frequencies ratio	
	Damped and Forced Harmonic Oscillations Damping force, Different cases for over, critical and under damping,	15
	Mechanical damped harmonic oscillators, Logarithmic decrement, Power	10
	Dissipation, Relaxation time & Quality Factor.	
	Dissipution, Relaxation time & Quanty I actor.	

Forced oscillations, Mechanical driven harmonic oscillators, Transient and	
steady state behavior, Power absorption, phenomenon of resonance, amplitude	
resonance, velocity resonance, sharpness of resonance/Fidelity, Bandwidth and	
quality factor.	

- 1. R. Resnick and D. Hilliday: Physics Vol-I
- 2. D. S. Mathur: Mechanics
- 3. Brijlal and Subrahmanyam: Waves and Oscillations
- 4. B.S. Semwal and M.S.Panwar : Wave Phenomena and

MaterialScience

- 5. Berkeley Physics Course: Mechanics Vol-I
- 6. R. K. Ghose: The mathematics of waves an Vibrations
- 7. D. P. Khandelwal: Oscillations and Waves
- 8. I. I. Pain: Physics of Vibration
- 9. A. P. French: Vibrations and Waves

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Programm		ear: II	Semester: III Paper-I
	Subject: Physics		
Course Co	ode: Course Title: Thermodynamics and Statistical Physics		
Course Ou	tcomes:		
 Und Und Und Com 	ognize the difference between reversible and irreversible processes. erstand First and Second Law of Thermodynamics and concept of Entropy erstand the physical significance of thermo dynamical potentials. nprehend the kinetic model of gases w.r.t. various gas laws. By the implementations and limitations of fundamental radiation laws.	y.	
Credits: 04			Core Compulsory
Max. Mark External E Internal As		N	Ain. Passin Aarks: 33
Fotal No. o	f Lectures-Tutorials-Practical (in hours per week): 4-0-0	I	
Unit	Торіс		No. of Lectures- 60
Unit I	Basic concepts and First law of thermodynamics		10
		versible quation	, , ,
Unit I	Second law of Thermodynamics and Entropy		10
	Insufficiency of first law of thermodynamics, Condition of Revers. Carnot's Engine and Carnot's Cycle, Second law of thermodyn Carnot's Theorem, Thermodynamic scale of temperature and its iden perfect gas, scale of temperature. Entropy, Mathematical formulati Second law of thermodynamics, Entropy of an ideal gas, T-S diagram and its applications, Evaluation Entropy changes in simple cases, Third law of thermodynamics.	amics, tity to ion of	
Unit	Thermodynamic Relations		10
III	Thermodynamic potentials, Maxwell''s equation from thermody potentials, Some useful manipulations with partial derivatives (con- adiabatic processes and Adiabatic stretching of a wire), The Cl Clapeyron''s equations, Triple point, Applications of Maxwell''s	oling in ausius-	-

	dynamical relations.	
Unit IV	Transport of Heat and Kinetic theory of Gases Black body radiation, Thermodynamics of radiations inside a hollow enclosure, Kirchoff's Laws, Derivation of Stefan Boltzmann Law, Wein''s displacement law, Black body spectrum formulaearly attempts, Raleigh Jean''s Law, Quantum theory of Radiation, Planck''s formula for black body spectrum, Wien''s law, Radiation as a photon gas. Degree of Freedom Law of Equipartition of Energy, Distributive law of velocities, Most Probable speed, Average and root mean square velocities.	15
Unit V	Fundamentals of Statistical Mechanics: Probability and thermodynamic probability, postulates of statistical mechanics, macrostates and microstates, equilibrium and fluctuation constraints, ensemble and average properties, phase space, μ -space and gamma space, division of phase space into cells, Micro canonical, canonical and grand canonical ensembles, Entropy and probability, interpretation of second law of thermodynamics, Boltzmann canonical distribution law. Classical and Quantum statistics, Comparison of three statistics.	

- 1. S. Loknathan : Thermodynamics, Heat and Statistical Physics
- 2. Sharma and K.K. Sarkar : Thermodynamics, and Statistical Physics
- 3. Brijlal and Subrahmanyam : Heat and Thermodynamics
- 4. Garg, Bansal and Ghose: Thermal Physics, McGraw Hill,2012.
- 5. M.W. Zemansky, R. Dittman, "Heat and Thermodynamics", McGraw Hill, 1997.
- 6. R. K Pathria, Statistical Mechanics, Elsevier
- 7. Meghnad Saha, B.N. Srivastava, "A Treatise on Heat", Indian Press, 1973

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Passed Certificate course in Basic Physics.

				Semester: II Practical Lab)	
		Subject: Physics Practical (Lab)			
Course Cod	e: Cours	se Title: Demonstrative Aspects of Thermodynamics and Statistical Phy (Practical)	sics		
Course Outco	omes:	(Therear)			
. Experimen	tal physic	cs has the most striking impact on the industry	wherever the	instruments	are used to
study and c	letermine	e the thermal properties.			
. Measureme	nt precis	ion and perfection is achieved through Lab Ex	periments.		
Credits: 02			Core	Compulsor	'y
Max. Marks:		×	Min.	Passing Ma	rks:17
Internal (Rec External Pra	ord File ctical Ex): 15 am: 20			
External Viv	a Voce :	15			
Fotal No. of I	Lectures	-Tutorials-Practical (in hours per week): 0-	0-4		
Unit		Торіс			No. of Lectures
		Lab Experiment	List		L
	1.	Thermal conductivity of a bad conductor by L	ee's method.		
		Mechanical equivalent of heat by Searle's met	hod.		
		Stefan's law			
		Platinum resistance thermometer.			
		Thermal conductivity of a good conductor by	Searle's metho	od.	60
		J by Callendar and Barnes method.			00
		Random throw- statistical method.	: 1		
	8.	Newton's law of cooling, sp. heat of Kerosene		our lo with	
	9.	Variation of thermos emf across two junction temperature	is of a thermot	couple with	
	10.	To show that deviation of probability of an evalues decreases with increase in the number and dices)			
	11.	To verify the laws of probability distribution probability of throwing one coin, two coin an	•	laws of	
	12.	Study of statistical distribution from the given probable value, averge value and rms value	n data and to f	ind most	

1. M. Yadav, Practical Physics, Vol 2, KedarNath Ramnath Pubaws of lication, 2023.

2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

4. Indu Prakash: Practical Physics

5. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Certificate course in Basic Physics

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

	DIPLOMAINAPPLIEDPHYSICS			
Programme:Diploma in Applied Physics Year:II Semo Voca				
	Subject:Physics			
CourseCod	e: CourseTitle: Basic Instrumentation Skills -III			
redits:03	Vocational	/Minor		
ax.Marks: xternalExa	100 Min.Passin	gMarks:33		
ternalAsse				
otal No.ofI	ectures-Tutorials-Practical (in hours per week):3-0-0			
Unit	Topic			
UnitI	Multimeter			
	Principles of measurement of dc voltage and dc current, ac voltage, ac curren			
	and resistance. Specifications of a multimeter and their significance			
	Advantage over conventional multimeter for voltage measurement with			
	respeci to input impedance and sensitivity.			
UnitII	Digital Multimeter			
	Block diagram and working of a digital multimeter. Working principle of			
	time interval, frequency and period measurement using univ	ersa		
	counter/frequency counter, time-base stability, accuracy and resolution.			
UnitIII	Electronic Voltmeter			
	Principles of voltage, measurement (block diagram only). Specification an electronic Voltmeter, AC millivoltmeter: Type of AC millivoltme			
	Block diagram ac milli -voltmeter, specifications and their significance.			

Books Recommended:

- 1. B L Theraja : A text book in Electrical Technology
- 2. M G Say : Performance and design of AC machines
- 3. S. Salivahanan& N. S.Kumar: Electronic Devices and Circuits, , 3rd Edn
- 4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.

Suggested equivalent online courses: This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Passed Certificate course in Basic Physics and Passed Semester III.

Paper-I Subject: Physics Course Code: Course Title: Optics Course Outcomes:		MA IN APPLIED PHYSICS Diploma in Applied Physics	Year: II	Sem	ester: IV
Course Code: Course Title: Optics Course Outcomes: 1. 1. Study of Fermat's Principle of Extremum Path and understand fundamental physics behind reflection and refraction of light. 2. Understand the theory of image formation by an optical system. 3. Study of different types of optical Aberration sand techniques for the irreduction. 4. Study of different types of optical instruments used in industry and research. Credits:04 Core Compulsory Max.Marks:100 External Exam:75 Internal Assessment:25 Min.Passing Marks:33 Total No. of Lectures-Tutorials-Practical (in hours per week):4-0-0 Vinit Unit Geometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. 10 Unit II Optical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical sematic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens. 15 Unit III Interference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, F	i i ogi annine.		1 041 0 11	Pape	er-I
Course Outcomes: 1. Study of Fermat's Principle of Extremum Path and understand fundamental physics behind reflection and refraction of light. 2. Understand the theory of image formation by an optical system. 3. Study of different types of optical Aberration sand techniques for the irreduction. 4. Study of different types of optical instruments used in industry and research. Core Compulsory Max.Marks:100 External Exam:75 Internal Assessment:25 Total No. of Lectures-Tutorials-Practical (in hours per week):4-0-0 Unit Optication to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. Unit II Opticat Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens. Unit II Opticat Instruments: Entrance Internal Assessment		Subject: Physics			
1. Study of Fermat's Principle of Extremum Path and understand fundamental physics behind reflection and refraction of light. 2. Understand the theory of image formation by an optical system. 3. Study of different types of optical Aberration sand techniques for the irreduction. 4. Study of different types of optical instruments used in industry and research. Core Compulsory Max.MarKs:100 Min.Passing Marks:33 Internal Assessment:25 Total No. of Lectures-Tutorials-Practical (in hours per week):4-0-0 Unit Optical Instruments: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. 10 Unit II Optical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gausaian eyepieces, Astronomical refracting telescope. Spectrometer, Aberrations in images: Chromatic aberrations of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination. 15 Unit III Diffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction grating. 16 </td <td>Course Code:</td> <td>Course Title: Optics</td> <th></th> <td></td> <td></td>	Course Code:	Course Title: Optics			
behind reflection and refraction of light. 2. Understand the theory of image formation by an optical system. 3. Study of different types of optical Aberration sand techniques for the irreduction. 4. Study of different types of optical instruments used in industry and research. Credits:04 Core Compulsory Max.Marks:100 External Exam:75 Internal Assessment:25 Total No. of Lectures-Tutorials-Practical (in hours per week):4-0-0 Unit Geometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. Unit II Optical Instruments: Entrance and exit pupils, need for a multiple lens experiece, Ramsden's, Huygen's and Gaussian experiecal mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens. Unit III Interference of Light: The principle of superposition, Two slit interference, obserance, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction for a straight edge, a slit and a wire using half-period zone analysis. Fraunchofer diffraction: Half-period zones, Zone plate, Fresnel Diffraction of a straight edge, a slit and a wire using half-period zone analysis. Fraunchofer diffraction: Half-period zones, Zone plate, Fresnel Diffraction of a straight edge, a slit and a wire using half-period zone analysis. Fraunchofer diffraction: Half-period zones, Zone plate, Fresnel Diffraction of a straight edge, a slit and a wire using half-period zone analysis. Fraunchofer diffraction: Half-period zones, Zone plate, Fresnel Diffraction of a straight edge, a slit and a wire using half-period zone analysis. Fraunchofer diffraction: Half-period zones, Zone plate, Fresnel Diffraction is zone zone of a single slit; Double Slit, Multiple slits and Diffraction zone zone analys	Course Outco	omes:			
 2. Understand the theory of image formation by an optical system. 3. Study of different types of optical Aberration sand techniques for the irreduction. 4. Study of different types of optical instruments used in industry and research. Credits:04 Core Compulsory Max.Marks:100 External Exam:75 Internal Assessment:25 Total No. of Lectures-Tutorials-Practical (in hours per week):4-0-0 Unit Geometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. Unit II Optical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope. Spectrometer, Aberrations in images: Chromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens. Unit III Interference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism. Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination. Unit IV Diffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction grating. Unit V Polarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol 	1. Study of	of Fermat's Principle of Extremum Path and understand fundar	nental physics		
 Study of different types of optical Aberration sand techniques for the irreduction. Study of different types of optical instruments used in industry and research. Credits:04 Core Compulsory Min.Passing Marks:33 Internal Assessment:25 Total No. of Lectures-Tutorials-Practical (in hours per week):4-0-0 Unit Geometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. Unit II Optical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens. Unit III Interference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination. Unit IV Diffraction of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nico 					
4. Study of different types of optical instruments used in industry and research. Credits:04 Core Compulsory Mix.Marks:100 Min.Passing Marks:33 External Exam:75 Min.Passing Marks:33 Internal Assessment:25 Total No. of Lectures-Tutorials-Practical (in hours per week):4-0-0 Unit Geometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. 10 Unit II Optical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens. 15 Unit III Interference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination. 16 Unit IV Diffraction pattern of a straight edge, a slit and a wire using half-period zones analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits					
Credits:04 Core Compulsory Mix.Marks: 100 External Exam:75 Internal Assessment:25 Min.Passing Marks:33 Total No. of Lectures-Tutorials-Practical (in hours per week):4-0-0 No. of Lectures Unit Topic No. of lectures Unit I Geometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. 10 Unit II Optical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens. 15 Unit III Interference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel bipfirsm, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination. 10 Unit IV Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating. </td <td></td> <td></td> <th></th> <td></td> <td></td>					
Max.Marks:100 Min.Passing Marks:33 External Exam:75 Min.Passing Marks:33 Internal Assessment:25 Total No. of Lectures-Tutorials-Practical (in hours per week):4-0-0 Unit Topic No. of Lectures Unit I Geometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. 10 Unit II Optical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens. 15 Unit III Interference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination. 10 Unit IV Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating. 10 Unit IV <td< td=""><td>-</td><td></td><th></th><td></td><td></td></td<>	-				
External Exam:75Internal Assessment:25Total No. of Lectures-Tutorials-Practical (in hours per week):4-0-0UnitTopicNo. of LecturesUnit IGeometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations.No. of LectureUnit IIOptical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens.15Unit IIIInterference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.10Unit IVDiffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction gating.10Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10	Credits:04		Core Compulsory		
Internal Assessment:25 No. of Lectures-Tutorials-Practical (in hours per week):4-0-0 Unit Topic No. of Lectures Unit I Geometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. 10 Unit II Optical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens. 115 Unit III Interference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination. 10 Unit IV Diffraction of Light: Fresnel Diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating. 10 Unit IV Diffraction of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol 10	Max.Marks: I External Exa	00 m·75	Min.Passing 1	Mark	s:33
UnitTopicNo. of LectureUnit IGeometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations.10Unit IIOptical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic 					
Unit IGeometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations.10Unit IIOptical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens.15Unit IIIInterference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.10Unit IVDiffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction grating.10Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10	Total No. of I	Lectures-Tutorials-Practical (in hours per week):4-0-0			
 application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations. Unit II Optical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens. Unit III Interference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination. Unit IV Diffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating. Unit V Polarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol 	Unit	Торіс			No. of Lecture
application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations.10Unit IIOptical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical 	Unit I	Geometrical Optics: Fermat's Principle: Principle of extra	emum path ar	nd its	
system, general relationship, thick lens and lens combinations.15Unit IIOptical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens.15Unit IIIInterference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.10Unit IVDiffraction of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10		application to deduce laws of reflection and refraction, Gauss	's general theo	ory of	
Unit IIOptical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens.15Unit IIIInterference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.10Unit IVDiffraction of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10				otical	10
Image: Problem of the second		system, general relationship, thick lens and lens combinations	5.		
eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens.15Unit IIIInterference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.16Unit IVDiffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating.10Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10	Unit II				15
aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens.15Unit IIIInterference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.15Unit IVDiffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating.10Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10					15
Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens.11Unit IIIInterference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.15Unit IVDiffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating.10Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10		• • •	-		
corrector plates, aplantic points, oil immersion objectives meniscus lens.15Unit IIIInterference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.15Unit IVDiffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating.10Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10			-		
Unit IIIInterference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.15Unit IVDiffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating.10Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10				maa	
Coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.10Unit IVDiffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating.10Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10	Unit III			ence,	15
Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.10Unit IVDiffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating.10Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10					15
of equal thickness and equal inclination.Image: Image:			-		
Unit IVDiffraction of Light: Fresnel Diffraction: Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Fraunhofer diffraction: Diffraction of a Single slit; Double Slit, Multiple slits and Diffraction grating.10Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10			ger fringes, Fr	inges	
Image: Image: The second sec	Unit IV		zones. Zone i	plate.	
Unit V Polarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol 10				-	10
Unit VPolarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol10					
polarized light – production and analysis, Malus law, Brewster's law, Nicol		Multiple slits and Diffraction grating.			
polarized light – production and analysis, Malus law, Brewster's law, Nicol	Unit V	Polarization of Light: Transverse nature of light waves,	Concept of I	Plane	10
prism, Circular and elliptical polarization, Double refraction.		polarized light - production and analysis, Malus law, Bre	-		10
		prism, Circular and elliptical polarization, Double refraction.			

- 1. Fundamentals of Optics, F A Jenkins and H E White, 1976, McGraw-Hill
- 2. Principles of Optics, B. K. Mathur, 1995, Gopal Printing
- 3. Fundamentals of Optics, H. R. Gulati and D.R. Khanna, 1991, R. Chand Publication
- 4. A Textbook of Optics, N. Subramanyam and Brijlal.
- 5. Optics and Atomic Physics, D. P. Khandelwal.
- 6. Physical Optics, A. K. Ghatak.
- 7. Optics, Eugene Hecht, Pearson Publishers.
- 8. Optics, Satya Prakash.

Suggested OnlineLink:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Swayam Prabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested equivalent online courses:

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Passed Certificate course in Basic Physics and Passed Semester III.

		Year: II	
Programme: Diploma in Applied Physics			Semester: IV Practical (Lab)
	Subject: Physics Practical (Lab)		
CourseCode	Course Title: Demonstrative Aspects of Optics(I	Practical)	
Course Outo	comes:		
study and	ntal physics has the most striking impact on the indus determine the optical properties. ent precision and perfection is achieved through Lab		ments are used to
Credits: 02		Core Com	oulsory
External Viv	ecord File): 15 actical Exam: 20 va Voce : 15		ng Marks:17
Total No. of	Lectures-Tutorials-Practical (in hours per week):	0-0-4	
Unit	Торіс		No. of Lectures
	Lab Experime	nt List	
	1. Nodal slide assembly, Location of cardinal poin	ts of lens system.	
	2. Newton's formula.		
	3. Dispersive power of prism.		
	4. Resolving power of a telescope.		
	5. To determine the Resolving Power of a Prism.		
	6. To verify the Cauchy's dispersion formula.		60
	7. To find the thickness of the wire using optical bench		
	8. To determine the thickness of mica-sheet by using B	iprism	
	9. Newtons ring experiment		
	10. To determine specific rotation of cane sugar us	sing polarimeter	
	11. Diffraction grating		
	12. Malus Law		
	13. Sextant		

1. M. Yadav, Practical Physics, Vol 2, KedarNath Ramnath Publication, 2023.

2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

- 4. Indu Prakash, Practical Physics
- 5. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Certificate course in Basic Physics and Semester III.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

	DIPLOMAINAPPLIEDPHYSICS	
Programme:	Diploma in Applied Physics Year:II Semest Vocation	er: IV onal/Minor
	Subject:Physics	
CourseCode	e: CourseTitle: Basic Instrumentation Skills -IV	
Credits:03	Vocational (Experimentational (Experimentational (Experimentation)	nents/hand
Max.Marks: External Exa Internal Asse	m:75	5:33
TotalNo.ofLe	ectures-Tutorials-Practical (in hours per week):3-0-0	
Unit	Торіс	No. of Lectures
UnitI	 Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only— no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance. Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working. 	20
UnitII	Signal and pulse Generators Block diagram, explanation and specifications of low frequency signal generator and pulse generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.	10
UnitIII	Impedance Bridges Block diagram of bridge. Working principles of basic (balancing) RLC bridge, Specifications of RLC bridge, Block diagram and working principle as of a Q- meter, Digital LCR bridges.	15

Suggested Reading **Books Recommended:**

- B L Theraja: A text book in Electrical Technology
 M G Say: Performance and design of AC machines
- 3. S. Salivahanan& N. S. Kumar: Electronic Devices and Circuits, 3rd Edn
- 4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.

Suggested OnlineLink:

- 1. MITOpenLearning-MassachusettsInstituteofTechnology,https://openlearning.mit.edu/
- 2. NationalProgrammeonTechnologyEnhancedLearning(NPTEL),htt
- ps://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH

Minor/Elective (04 Credit, One from the list El2)

Students having major in Physics will have to choose the elective/minor from sl. no. 1-6. Other faculty students (Arts/Commerce) have to choice sl. no. 1.

- 1. Elementary Physics-II
- 2. Elements of Modern Physics
- 3. Electromagnetic Theory
- 4. Optoelectronic Devices
- 5. Opto-Electronics and Laser Instrumentation
- 6. Classical Dynamics

DIPLOMA IN APPLIED PHYSICS

Programme: *Diploma in Applied Physics*

Year: II Semester: III/IV

Course Code:

Course Title: Elementary Physics-II

Subject: Physics

Credits: 04	Minor/Elective	
Max. Marks: 100 External Exam: 75 Internal Assessment: 25 Fotal No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0		arks: 33
Unit	Topic	No. of Lectures
Unit I	Semiconductors- P- type, n-type, Semiconductor materials, pn diode, Depletion region, Working of pn diode, characteristics, Diode as a rectifier, Transistors PNP and NPN and their working.	15
Unit II	OPTICS- Mirrors and lenses, image formation, lens formula, Ramsden and Huygens eyepieces.	10
Unit III	Newton's first and Second Law, Concept of force and mass, Some particular forces, Newton's third law, Friction, Properties of friction.	10
Unit IV	Rectilinear motion, laws of motion, Work and energy, conservation of energy, law of gravitation and Kepler's law (not derivation).	10
Unit V	Thermodynamics systems, Thermal equilibrium, Zeroth law, work done, first law of thermodynamics, Internal energy, enthalpy.	15

Suggested Reading:

- 1- Physics: Resnick and Halliday, John Wiley, New York.
- 2- Mechanics: D S Mathur, S Chand & company.
- 3- Semiconductor materials and devices, M S Tyagi, John Wiley, New York.
- 4- Basic Electronics: B L Theraja, S Chand & company.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLOMA IN APPLIED PHYSICS

DIPLOMA	IN APPLIED PHYSICS		
Programme: <i>Dip</i>	loma in Applied Physics	Year: II	Semester: III/IV
	Subject: Physics	I	1
Course Code:	Course Title: Elements of Modern Phys	sics	

Credits: 04	M	inor/Electiv	e
1ax. Marks: xternal Exa nternal Asse	m: 75 ssment: 25	in. Passing	Marks: 33
'otal No. of L	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
Unit	Торіс		No. of Lectures
Unit I	Quantum Mechanics and Bohr Atom Model		
	Planck's quantum, Planck's constant and light as a collection Photoelectric effect and Compton scattering. De Broglie wave matter waves; Davisson-Germer experiment. Rutherford mo	elength and	
	model, quantization rule and atomic stability; calculation of en for hydrogen like atoms and their spectra.		15
Unit II	Quantum Systems and Heisenberg Uncertainty Principle		
	Position measurement; Wave-particle duality, Heisenberg uncer	tainty	
	principle- impossibility of a particle following a trajectory;	Estimating	15
	minimum energy of a confined particle using uncertainty princip	ple;	15
	Energy-time uncertainty principle.		
Unit III	Matter Waves and Schrödinger Equation		
	Two slit interference experiment with photons, atoms & parti		
	superposition principle as a consequence; Matter waves		
	amplitude; Schrodinger equation for non-relativistic particles;		15
	and Energy operators; stationary states; physical interpr		
	wavefunction, probabilities and normalization; Probability and	probability	
T T . •4 TT 7	current densities in one dimension.		
Unit IV	Motion in a Potential Well	,	
	One dimensional infinitely rigid box- energy eigenv		15
	eigenfunctions, normalization; Quantum dot as an example; Qu		
	mechanical tunnelling in one dimension - across a step potentia across a rectangular potential barrier.	u and	
	across a rectangular potential barrier.		

Suggested Reading:

- 1. Arthur Beiser: Concepts of Modern Physics
- 2. J. R. Taylor, C.D. Zafiratos: Modern Physics
- 3. Thomas A. Moore: Six Ideas that Shaped Physics: Particle Behave like Waves
- 4. Berkeley Physics Course: Vol.4 (Quantum Physics)
- 5. Serway, Moses, and Moyer: Modern Physics
- 6. G. Kaur and G.R. Pickrell: Modern Physics
- 7. B.L. Flint and H.T. Worsnop: Advanced Practical Physics for Students
- 8. Michael Nelson and Jon M. Ogbor: Advanced level Physics Practicals, , 4th Edition

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLO	MA IN APPLIED PHYSICS		
Programme:	Diploma in Applied Physics	Year: II	Semester: III/IV
	Subject: Physi	cs	
Course Cod	e: Course Title: Electrom	agnetic Theory	
Credits: 04		Minor/Elect	tive
Max. Marks: External Exa Internal Asse	m: 75 ssment: 25		g Marks: 25
fotal No. of I	Lectures-Tutorials-Practical (in hours per week):	4-0-0	
Unit	Торіс		No. of Lectures
Unit I	Maxwell's Equations Review of electrostatic and electromagnetic equati integral forms, Maxwell's equations. Displa- Equations. Plane Waves in Dielectric Media. Poynting Vector. Electromagnetic (EM) Energy D of Electromagnetic Field Energy Density.	cement Current. Wa Poynting Theorem a	ive inc
Unit II	EM Wave Propagation in Unbounded Media Plane EM waves through vacuum and isotro transverse nature of plane EM waves, refracti constant, wave impedance. Propagation through c relaxation time, skin depth.	ive index and dielect	
Unit III	EM Wave in Bounded Media Boundary conditions at a plane interface between Refraction of plane waves at plane interface between Laws of Reflection and Refraction, Fresnel's Form Total internal reflection,	een two dielectric med	
Unit IV	Polarization of Electromagnetic Waves Description of Linear Circular and Elliptical P	olarization Uniavial (15

Description of Linear, Circular and Elliptical Polarization. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices.

Suggested Reading

1. D.J. Griffiths: Introduction to Electrodynamics

2. M.N.O. Sadiku: Elements of Electromagnetics

3. T.L. Chow: Introduction to Electromagnetic Theory

4. M.A.W. Miah: Fundamentals of Electromagnetics

- 5. R.S. Kshetrimayun: Electromagnetic field Theory
- 6. Willian H. Hayt: Engineering Electromagnetic
- 7. J.A. Edminster: Electromagnetics, Schaum Series, 2006
- 8. B.L. Flint and H.T. Worsnop: Advanced Practical Physics for Students

9. Michael Nelson and J. M. Ogborn: Advanced level Physics Practicals

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLOMA IN APPLIED PHYSICS

Programme: *Diploma in Applied Physics*

Year: II Semester: III/IV

Subject: Physics

Course Code: Course Title: Optoelectronic Devices

Credits: 04	Minor/Elective	
Max. Marks: External Exa Internal Asse	m: 75 ssment: 25	xs: 33
Total No. of I	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lectures
Unit I	Properties of semiconductors Electron and photon distribution: density of states, effective mass and band structure, effect of temperature and pressure on band gap, recombination processes.	15
	Basics of semiconductor optics: Dual nature of light, band structure of various semiconductors, light absorption and emission, photoluminescence electroluminescence, radioactive and non-radiative recombination, wave trains.	
Unit II	Semiconductor light-emitting diodes and Semiconductor lasers Structure and types of LEDs and their characteristics, guided waves and optical modes, optical gain, confinement factor, internal and external efficiency semiconductor heterojunctions, double hetero structure LEDs.	15
	Semiconductor lasers: Spontaneous and stimulated emission, principles of a laser diode, threshold current, effect of temperature, design of an edge-emitting diode, emission spectrum of a laser diode, quantum wells, quantum-well laser diodes.	
Unit III	Semiconductor light modulators Modulating light (direct modulation of laser diodes, electro-optic modulation acousto-optic modulation), isolating light (magneto-optic isolators), inducing optical nonlinearity (frequency conversion, switching)	15

Unit IV	Semiconductor light detectors	
	I-V characteristics of a p-n diode under illumination, photovoltaic and	
	photoconductive modes, load line, photocells and photodiodes, pi-r	15
	photodiodes, responsivity, noise and sensitivity, photodiode materials, electric	
	circuits with photodiodes, solar cells.	

Suggested Reading:

- 1. Semiconductor Optoelectronics: Physics and Technology, Jasprit Singh, McGraw HillCompanies, ISBN 0070576378
- 2. Optoelectronics, E. Rosencher and B. Vinter, Cambridge Univ. Press, ISBN 052177813.
- 3. Photonic Devices, J. Liu, Cambridge Univ. Press, ISBN 0521551951.
- 4. Semiconductor Optoelectronic Devices 2nd Edition", P. Bhattacharya, Prentice Hall, ISBN 0134956567.
- 5. Physics of Semiconductor Devices, by S. M. Size (2nd Edition, Wiley, New York, 1981)

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLO	MA IN APPLIED PHYSICS	
Programme:	Diploma in Applied Physics Year: II Seme	ester: III/IV
	Subject: Physics	
Course Cod	e: Course Title: Opto-Electronics and Laser Instrumentation	
Credits: 04	Minor/Elective	
Max. Marks: External Exa Internal Asse	m: 75	ks: 33
	ectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lectures
Unit II	Characteristics of optical radiation, luminescence, irradiance – Optical Sources – Photo Detectors – Opto-couplers and their application in analog and digita devices. Optical Fiber Fundamentals – modes, types of optical fibers – fibe coupling – Fiber optic sensors for common industrial parameters – V, I pressure, temperature – IR sources and detectors – fiber optic gyroscope. Characteristics of LASERS Einstein's equations – population inversion two, three and four level system Laser rate equation, properties – modes – Resonator configurations – Q switching and mode locking, cavity dumping, single frequency operation – Types of Lasers. Applications – Lasers for measurement of distance and length velocity, acceleration, atmospheric effects, pollutants.	15
Unit III	Applications Lasers for measurement of distance and length, velocity, acceleration atmospheric effects, pollutants. Material processing applications – Laser heating melting, scribing, splicing, welding and trimming of materials, removal and vaporization.	15
Unit IV	Holographic Interferometry and Applications Holography for non-destructive testing – medical applications – lasers and tissue interaction -surgery – dermatology.	15

Suggested Reading

- 1. Wilson and Hawkes, "Opto Electronics-An Introduction", Third Edition, Pearson Education, 1998.
- 2. John Ready, "Industrial Applications of Lasers", Second Edition, Academic Press, 1997.
- Bhattacharya P, "Semiconductor Optoelectronics", Second Edition, Pearson Education, 1998.
- 4. Djafar K. Mynbaev, Lowell L. Scheiner, "Fiber-Optic Communications Technology", First Edition, Prentice Hall of India Pvt. Limited, 2000.
- 5. R. P. Khare, "Fiber Optics and Optoelectronics", Oxford Press, 2004.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLOMA IN APPLIED PHYSICS		
Programme: Diploma in Applied Physics	Year: II	Semester: III/IV
Subject: Physics		

Course Co	ode:
-----------	------

Course Title: Classical Dynamics

redits: 04	Mi	inor/Elective	
ix. Marks: ternal Exa ernal Asse	m: 75 ssment:25	in. Passing Ma	rks: 25
tal No. of I	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
Unit	Торіс		No. of Lecture
Unit I	Classical Mechanics of Point Particles		
	Review of Newtonian Mechanics; Generalized coordinates a Hamilton's principle, Lagrangian and the Euler-Lagrange ec dimensional Simple Harmonic Oscillations and falling bod gravity; applications to simple systems such as coupled oscillat momenta & Hamiltonian. Hamilton's equations of motion. App	quations, one- y in uniform tors Canonical lications:	15
Unit II	Hamiltonian for a harmonic oscillator, particle in a central force Small Amplitude Oscillations	field	
	Minima of potential energy and points of stable equilibrium, exp potential energy around a minimum, small amplitude oscillation minimum, normal modes of oscillations example of N identical connected in a linear fashion to (N -1) - identical springs.	ons about the	15
Unit III	Special Theory of Relativity		
	Postulates of Special Theory of Relativity. Lorentz Tra Minkowski space. The invariant interval, light cone and world time diagrams. Time-dilation, length contraction and twin po- vectors: space-like, time-like and light-like. Four-velocity and Metric and alternating tensors. Four-momentum and energy relation. Doppler effect from a four-vector perspective. Con- force. Conservation of four-momentum. Relativistic kinematics to two-body decay of an unstable particle.	l lines. Space- aradox. Four- l acceleration gy-momentum cept of four-	15
Unit IV	Fluid Dynamics		
	Density and pressure in a fluid, an element of fluid and continuity equation and mass conservation, stream-lined mo flow, Poiseuille's equation for flow of a liquid through a pipe, N	otion, laminar	15

equation, qualitative description of turbulence, Reynolds number, Basic
physics of fluids: Definition of a fluid- shear stress; Fluid, properties-
viscosity, thermal conductivity, mass diffusivity, other fluid properties and
equation of state; Flow visualization - streamlines, pathlines, Streaklines

Suggested Reading

- 1. H. Goldstein: Classical Mechanics
- 2. N.C. Rana & P. S. Jog: Classical Mechanics
- 3. Landau and Lifshitz: Mechanics
- 4. Sommerfeld: Mechanics
- 5. Whittaker: Analytical Dynamics of Particles and Rigid Bodies
- 6. Raychaudhuri: Classical Mechanics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DEGREE IN APPLIED PHYSICS

Programme: Degree in Applied Physics

CourseCode:

CourseTitle: Solid State Physics

Subject: Physics

Credits:04		Core/Compulsory				
Max.Marks: ExternalExa InternalAsses	n:75	Min.PassingMarks	5:33			
TotalNo.ofLectures-Tutorials-Practical(inhoursperweek):4-0-0						
Unit	Торіс		No. of Lectures			
Unit I	Unit ICrystal Structure Amorphous and Crystalline Materials. Lattice and Basis. Types of Lattices Bravais lattices, Unit Cell. Primitive and non-primitive lattice, Symmetry elements, point group and space group, Simple structure of Sodium chloride (fcc), Cesium chloride (bcc), hcp, packing fraction of sc, fcc, bcc and hcp Miller Indices.					
Unit II	Reciprocal Lattice: Reciprocal lattice, Brillouin Zones. Reciprocal lattice and Brillouin Zone of sc, fcc and bcc structure, Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor. Extinction conditions of diffraction for sc, bcc and fcc lattice, Experimental methods of crystal structure determination-Laue, single crystal and powder method.					
Unit III	Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T3 law					
Unit IV	Crystal Binding and Elastic Properties: Ionic, coval hydrogen bond, Analysis of stress and strain, Elastic comple constant, elastic constant for cubic crystal, Elastic waves and crystal with example of 100 direction, Experimental determined and the constants	iance and stiffness d velocity in cubic	10			
Unit V	Magnetic Properties of Matter: Dia-, Para-, Ferri- a Materials. Classical Langevin Theory of dia – and Paran Quantum Mechanical Treatment of Paramagnetism. Cur Theory of Ferromagnetism and Ferromagnetic Domains. I Curve. Hysteresis and Energy Loss	nagnetic Domains. ie's law, Weiss's	15			

Reference Books:

- Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
- Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India
- Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- Solid State Physics, Neil W. Ashcroft and N. David Mermin, 1976, Cengage Learning
- Solid-state Physics, H.Ibach and H Luth, 2009, Springer
- Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
- Solid State Physics, M.A. Wahab, 2011, Narosa Publications
- NPTEL (http://nptel.ac.in)
- Virtual Labs (http://www.vlab.co.in)

Suggested OnlineLink:

1. MITOpenLearning-MassachusettsInstituteofTechnology,https://openlearning.mit.edu/

 $2. \ National Programme on Technology Enhanced Learning (NPTEL), htt$

ps://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH

Channel, https://www.swayamprabha.gov.in/index.php/program/curr

ent_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

CoursePrerequisites: Passed Semester IV.

	SCINCE			
Programme: <i>I</i>	Degree in Science		Year: III	Semester: V Practical (Lab)
	Subject: Physics Practical (Lab)			
Course Code	: Course Title: Demonstrative Aspects of Solid State Physics (Practical)			
Course Outco				
	nd the magnetic properties of materials.			
	the band gap of semiconductor. with SCR & UJT.			
	ad the characteristics of light emitting diode.			
10 understal	the entandet of stress of right entitling though.			
Credits: 02		Co	re Compuls	sory
Iax. Marks: 50 Min. Passing N				
	ord File): 15 tical Exam: 20	1911	n. 1 assing 1	viai K5.17
xternal Prac xternal Viva	tical Exam: 20			
	voce : 15 ectures-Tutorials-Practical (in hours per week): 0-0-4			
				N f
Unit	Торіс			No. of Lectures
	Lab Experiment Li	st		
	1. Measurement of Energy Band Gap of given semicon	ductor.		
	 Measurement of Energy Band Gap of given semicon To measure the Magnetic susceptibility of Solids. 	ductor.		
	 Measurement of Energy Band Gap of given semicon To measure the Magnetic susceptibility of Solids. To draw the BH curve of Fe using Solenoid & deterr 		rgy loss from	n
	2. To measure the Magnetic susceptibility of Solids.		rgy loss from	n
	 To measure the Magnetic susceptibility of Solids. To draw the BH curve of Fe using Solenoid & deterr Hysteresis. To find the corrosivity and retentivity of ferromagne 	nine ene tic samp	le.	n
	 To measure the Magnetic susceptibility of Solids. To draw the BH curve of Fe using Solenoid & deterr Hysteresis. To find the corrosivity and retentivity of ferromagne To measure the resistivity of a semiconductor (Ge) w 	nine ene tic samp	le.	
	 To measure the Magnetic susceptibility of Solids. To draw the BH curve of Fe using Solenoid & deterr Hysteresis. To find the corrosivity and retentivity of ferromagne To measure the resistivity of a semiconductor (Ge) v four-probe method (room temperature to 150 oC). 	nine ene tic samp vith temp	le. berature by	n 60
	 To measure the Magnetic susceptibility of Solids. To draw the BH curve of Fe using Solenoid & detern Hysteresis. To find the corrosivity and retentivity of ferromagne To measure the resistivity of a semiconductor (Ge) w four-probe method (room temperature to 150 oC). To determine the Hall coefficient of a semiconductor 	nine ene tic samp vith temp r sample	le. berature by	
	 To measure the Magnetic susceptibility of Solids. To draw the BH curve of Fe using Solenoid & detern Hysteresis. To find the corrosivity and retentivity of ferromagne To measure the resistivity of a semiconductor (Ge) w four-probe method (room temperature to 150 oC). To determine the Hall coefficient of a semiconductor To study & evaluation of Stefan's law by thermal metabolic 	nine ene tic samp vith temp r sample	le. berature by	
	 To measure the Magnetic susceptibility of Solids. To draw the BH curve of Fe using Solenoid & deterr Hysteresis. To find the corrosivity and retentivity of ferromagne To measure the resistivity of a semiconductor (Ge) w four-probe method (room temperature to 150 oC). To determine the Hall coefficient of a semiconductor To study & evaluation of Stefan's law by thermal meta. To study the VI characteristic of SCR. 	nine ene tic samp vith temp r sample ethod.	le. Derature by	
	 To measure the Magnetic susceptibility of Solids. To draw the BH curve of Fe using Solenoid & detern Hysteresis. To find the corrosivity and retentivity of ferromagne To measure the resistivity of a semiconductor (Ge) w four-probe method (room temperature to 150 oC). To determine the Hall coefficient of a semiconductor To study & evaluation of Stefan's law by thermal metals. To study the VI characteristic of SCR. To study UJT trigger circuit for half wave and full w 	nine ene tic samp vith temp r sample ethod.	le. Derature by	
	 To measure the Magnetic susceptibility of Solids. To draw the BH curve of Fe using Solenoid & deterr Hysteresis. To find the corrosivity and retentivity of ferromagne To measure the resistivity of a semiconductor (Ge) w four-probe method (room temperature to 150 oC). To determine the Hall coefficient of a semiconductor To study & evaluation of Stefan's law by thermal meta. To study the VI characteristic of SCR. 	nine ene tic samp with temp r sample ethod. ave cont	le. perature by rol.	

Suggested Readings:

1. M. Yadav, Practical Physics, Vol 3, KedarNath Ramnath Publication, 2023.

2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

4. Indu Prakash: Practical Physics

5. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
 Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

Programme: Degree in Science Year: III						
	Subject: Physics	Paper-II				
Course Cod	e: Course Title: Basic Electronics					
Course Outc	omes:					
	of different Network Theorems for simplifying complicated electronics circuits.					
2. Study	of Regulated Power Supply. Understand different types of Rectifiers, Filters and	Voltage				
Regula	ator.					
•	of different types of special diodes and their applications					
4. Study	of Transistors and their applications in different types of Amplifiers.					
Credits: 04	Core Compulsor	ry				
Aax. Marks:		arks: 33				
External Exa nternal Exa						
	Lectures-Tutorials-Practical (in hours per week): 4-0-0					
Unit	Торіс	No. of Lecture				
UnitI	Network Theorems:	7				
	Constant voltage and constant current source, Conversion of voltage source into					
	current source and vice-versa, Superposition theorem, Thevenin's theorem and					
	procedure for finding Thevenin equivalent circuit, Norton's theorem and procedure for finding Norton equivalent circuit, Reciprocity theorem, maximum power transfe					
	theorem, Applications of network theorems	ſ				
UnitII	Semiconductor Diodes:	15				
	Intrinsic and extrinsic semiconductors, P and N type semiconductors, Barrier					
	formation in PN junction diode, qualitative idea of current flow mechanism in forward and reverse biased diode, PN junction and its characteristics, Static					
	and dynamic resistance, Special diodes: Tunneling effect (Tunnel diode)					
	Zener diode, Varactor diode, Point contact diode, V-I characteristic of these					
	diodes, Principle and structure of Opto-electronic devices: LED, Photodiode	,				
UnitIII	Solar cell. Power Supplies:	8				
Unitin	Block diagram of power supply (regulated and unregulated), Diode as a	0				
	rectifier: Half and Full wave rectifiers, Bridge rectifiers, Peak inverse					
	voltage, Efficiency, Ripple factor, Filters: Low pass and High pass filters,					
	Band pass and Band stop filters, L and π – filters (Series inductor, Shunt					
UnitI IV	capacitor, LC, CLC filters), Zener diode as a voltage regulator.	15				
	N-P-N and P-N-P transistors, Transistor currents, Characteristics of CB, CE and CC					
	Current gains α , β and γ , Relations between α , β and γ , Basic CE amplifier circuit					

	transistor amplifier in CE mode: Input resistance, Output resistance, Effective						
	collector load, Current, Voltage and Power gains, Active, Cutoff, and Saturation						
	regions, Basic Idea of FET, MOSFET, & UJT.						
UnitI V	Transistor Amplifiers:	15					
	Transistor biasing: Needs and requirements, Stability factor, Fixed-bias circuit,						
	Collector to base bias circuit, Bias circuit with emitter resistor, Voltage divider						
	biasing circuit, Single-stage transistor amplifiers, Common base (CB),						
	Common emitter (CE) and Common collector (CC) amplifier, Comparison of a						
	amplifier configurations. Amplifier classification based on biasing condition,						
	Basic Idea of Power amplifiers (Class A, Push Pull amplifier, Class B and						
	Class C), RC-coupled two stage amplifier and its frequency response.						

SuggestedReading

- 1. M. K Baagde, S. P. Singh and Kamal Singh: Elements of Electronics
- 2. B. L. Theraja: Basic Electronics
- 3. V. K. Mehta: Elements of Electronics
- 4. J. D. Ryder: Networks, Lines and Fields
- 5. J. D. Ryder: Electronic Fundamentals and Applications.
- 6. Millman and Halkias: Integrated Electronics

Suggested OnlineLink:

- 4. MITOpenLearning-MassachusettsInstituteofTechnology,https://openlearning.mit.edu/
- $5. \ National Programme on Technology Enhanced Learning (NPTEL), htt$

ps://www.youtube.com/user/nptelhrd

6. SwayamPrabha - DTH

Channel,https://www.swayamprabha.gov.in/index.php/program/curr

ent_he/8

This course can be opted as an elective by the students of following subjects: The course can

be opted as an elective, which is open to all students.

Suggested Continuous Evaluation(25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Passed SemesterIV.

DEGREE IN SCINCE

Programme: Degree in Science Year: III						
	Subject: Physics Practical (Lab)		(Lab)			
Course Code:	Course Title: Demonstrative Aspects of Basic Electronics (Practical)					
Course Outcor	nes:					
1. Experimenta	l physics has the most striking impact on the industry wherever	the instrumer	nts are used to			
study the Electr	onics and its application in industry and research.					
2. Measurement	precision and perfection is achieved through Lab Experiments					
<u>() 1'(02</u>						
Credits: 02		ore Compuls	ory			
Max. Marks: 5 Internal (Reco External Pract External Viva	rd File): 15 ical Exam: 20	lin. Passing N	Aarks:17			
	ectures-Tutorials-Practical (in hours per week): 0-0-4					
Unit	Торіс		No. of Lectures			
I	Lab Experiment List					
	1. To study characteristics of R-C coupled Amplifier with and	l without				
	feedback.					
	2. To study the characteristics of integrating and differentiating	circuit.	60			
	 To draw the characteristics of P-N junction diode. To draw the characteristics of PNP and NPN junction transist 	or				
	5. Measurements of h-parameters of a transistor.	.01.				
	5. Study of different types of Rectifiers and Filters.					
	7. Verification of Network theorems.					
	8. Child Langmuir law.					
	9. Study of power supply (Ripple factor).					
	10. Study of Zener diode and regulation (taking different s	source voltage	;			
	and loads).					
	11. Phase measurement using a C.R.O.	and				
	12. Study characteristics of Transformr coupled Amplifier with feedback	and without				

Suggested Readings:

1. M. Yadav, Practical Physics, Vol 3, KedarNath Ramnath Publication, 2023.

2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

4. Indu Prakash: Practical Physics

5. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

3. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

4. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

Programme: Degree in Applied Physics Year:III Semes Paper							
	Subject: Physics						
Course Code:	Course Title: Modern Physics & Elementary Quantum Mechanics						
Credits:04	dits:04 Core Compulsory						
Max. Marks:100 External Exam:75 nternal Assessment:25							
	Lectures-Tutorials-Practical (in hours per week):4-0-0						
Unit	Торіс		No. of Lectures				
Unit I	Thomson model, Rutherford model, Bohr model and spectra of hydrogen atoms, Shortcomings of these models, Bohr-Sommerfeld's model, Stern-Gerlach Experiment, Bohr magneton, Larmor's precession, Vector atom model, Spatial quantization and electron spin.						
Unit II	Optical spectra and spectral notations, L-S and J-J coupling, selec intensity rules, Explanation of fine structure of sodium D line, No effect, X-ray spectra (Characteristic and continuous), Moseley's law	ormal Zeeman	10				
Unit III	Origin of Quantum theory, Failure of Classical Physics to explain the phenomena such as Black body spectrum, Photoelectric effect, Characteristics and Einstein's explanation, Planck's quantum hypothesis, Planck's constant and light as a collection of photons; Compton scattering						
Unit IV							
Unit V	Schrodinger's equation (Time independent and Time dependent), Quantum Mechanics, Properties of Wave Function, Physical int Wave Function, Probability and probability current densite dimensions; Conditions for Physical acceptability of Wav Normalization, Eigenvalues and Eigenfunctions, Operator, position and Energy operators; Expectation values, Wave Function of a Free	erpretation of ies in three e Functions, n, momentum	15				

SuggestedReading

- 1. Concepts of Modern Physics, Arthur Beiser, 2009, McGraw-Hill.
- 2. Modern Physics, John R. Taylor, Chris D. Zafiratos, Michael A .Dubson, 2009, PHI Learning.
- 3. Six Ideas that Shaped Physics: Particle Behave like Waves, Thomas A. Moore, 2003, McGraw Hill. 58

- 4. Modern Physics, R. A. Serway, C. J. Moses, and C. A. Moyer, 2005, Cengage Learning.
- 5. A Text book of Quantum Mechanics, P. M. Mathews & K. Venkatesan, 2nd Ed., 2010, McGraw Hill
- 6. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2ndEdn., 2002, Wiley.
- 7. Quantum Mechanics, Leonard I. Schiff, 3rdEdn. 2010, Tata McGraw Hill.
- 8. Quantum Mechanics, G. Aruldhas, 2ndEdn. 2002, PHI Learning of India.

Suggested OnlineLink:

4. MITOpenLearning-MassachusettsInstituteofTechnology,https://openlearning.mit.edu/

5. NationalProgrammeonTechnologyEnhancedLearning(NPTEL),htt

ps://www.youtube.com/user/nptelhrd

6. SwayamPrabha-

DTHChannel,https://www.swayamprabha.gov.in/index.php/progra

m/current_he/8

SuggestedContinuousEvaluation(25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

	SCINCE				
Programme: Degree in Science Year: III S P (I					
	Subject: Physics Practical (Lab)				
Course Cod	Elementary Quantum Mechanics (Practical)				
Course Outco	omes:				
1. Experimen	tal physics has the most striking impact on the industry wherev	er the instru	ments are used t		
-	ermine the modern physics concepts.				
2. Measureme	nt precision and perfection is achieved through Lab Experimen	ts.			
Credits: 02	Credits: 02 Core Comp				
	Max. Marks: 50 Min. Passing				
Internal (Rec External Pra	cord File): 15 ctical Exam: 20		-		
External Viv	a Voce : 15				
Fotal No. of 1	Lectures-Tutorials-Practical (in hours per week): 0-0-4				
Unit	Торіс		No. of		
	-				
	I ah Evneriment List		Lectures		
	Lab Experiment List				
	Lab Experiment List 1. Frank-Hertz Experiment.				
	-	ect.			
	1. Frank-Hertz Experiment.	ect.			
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff 	ect.			
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff 'e/m' by Thomson method. 	ect.	Lectures		
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff 'e/m' by Thomson method. 'e/m' Magnetron method. 		60		
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff 'e/m' by Thomson method. 'e/m' Magnetron method. 'e/m' Helical method 		60		
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff 'e/m' by Thomson method. 'e/m' Magnetron method. 'e/m' Helical method To determine the Planck's constant using LEDs of at learning the Planck's constant using the Planck's constant usi	st 4 differe	60 nt		
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff 'e/m' by Thomson method. 'e/m' Magnetron method. 'e/m' Helical method To determine the Planck's constant using LEDs of at lead colours. 	st 4 differe	60 nt		
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff 'e/m' by Thomson method. 'e/m' Magnetron method. 'e/m' Helical method To determine the Planck's constant using LEDs of at lead colours. To determine the wavelength of laser source using diffract 	st 4 differe tion of sing	60 nt le		
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff 3. 'e/m' by Thomson method. 'e/m' Magnetron method. 'e/m' Helical method To determine the Planck's constant using LEDs of at lea colours. To determine the wavelength of laser source using diffract slit. 	st 4 differe tion of sing	60 nt le		
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff 3. 'e/m' by Thomson method. 'e/m' Magnetron method. 'e/m' Helical method To determine the Planck's constant using LEDs of at lead colours. To determine the wavelength of laser source using diffraction slit. To determine the wavelength of laser source using diffraction 	st 4 differe tion of sing on of double	60 nt le		
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff 3. 'e/m' by Thomson method. 'e/m' Magnetron method. 'e/m' Helical method To determine the Planck's constant using LEDs of at lea colours. To determine the wavelength of laser source using diffract slit. To determine the wavelength of laser source using diffraction slits. 	st 4 differe tion of sing on of double	60 nt le		
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric eff. 'e/m' by Thomson method. 'e/m' Magnetron method. 'e/m' Helical method To determine the Planck's constant using LEDs of at lead colours. To determine the wavelength of laser source using diffract slit. To determine the wavelength of laser source using diffraction slits. Determination of Ionization Potential using thyratron value 	st 4 differe tion of sing on of double	60 nt le		

Suggested Readings:

1. M. Yadav, Practical Physics, Vol 3, KedarNath Ramnath Publication, 2023.

2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

4. Indu Prakash: Practical Physics

5. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

5. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
6. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

Programme: Degree in Science Year: III						
	Subject: Physics	Paper-II				
Course Cod	le: Course Title: Analog and Digital Electronics					
Course Outc	omes:					
 Study Unde 	of feedback in amplifiers along with their advantages and disadvantages. of different types of oscillators. rstand the concepts of Boolean Algebra and various number systems of logic gates and their applications.					
Credits: 04	Core Comput	sory				
Max. Marks External Exa Internal Ass	am: 75 essment: 25	Marks: 33				
Fotal No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0					
Unit	Торіс	No. of Lectures				
UnitI	FeedbackAmplifiers Concept of feedback in amplifier, Types of feedback, Voltage gain of feedback amplifier, Advantages of negative feedback, Gain stability, Decreased distortion, Increased bandwidth, Increase in input impedance, Decrease in output impedance, Amplifier circuits with negative feedback,					
UnitII	Advantage of positive feedback.UnitIIOscillatorsClassification of oscillators, Frequency of oscillating current, Frequency stability of an oscillator, Essential of a feedback LC oscillator, Tuned base oscillator, Tuned collector oscillator, Hartley oscillator, Colpitt oscillator, Clapp oscillator, Tunnel diode oscillator, Crystal oscillator, Phase shift oscillator, Wien bridge oscillator, Relaxation oscillator, Astable, monostable and bistable multivibrator, Schmitt trigger, Saw-tooth generator.					
UnitIII	Operational Amplifiers (Black box approach): Characteristics of an ideal and practical Op-Amp (IC-741), Open-loop & closed-loop gain. CMRR, Concept of virtual ground. applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Zero crossing detector					

UnitIV	Number System:	10				
	Decimal, Binary, Octal and Hexadecimal number systems, Inter-conversion					
	of different number systems, Binary addition and subtraction, unsigned					
	binary numbers, Sign-magnitude numbers, Complement of a number (1's					
	complement and 2's complement), BCD, GREY, EXCESS-3 codes.					
UnitV	Logic Gates and Boolean Algebra:	15				
	Positive and negative logic, AND, OR and NOT gates (Realization using					
	diodes and transistor), NAND and NOR Gates as universal gates, XOR and					
	XNOR gates. De Morgan's theorems, Boolean laws, Simplification of logic					
	circuit using Boolean algebra, Fundamental products, Minterms and					
	maxterms, Conversion of a truth table into an equivalent logic circuit by (1)					
	Sum of products method and (2) Karnaugh map, Half adder, Full adder and					
	Subtractor, 4-bit binary adder-Subtractor.					

Suggested Reading

- 1. M.K. Baagde, S.P. Singh and Kamal Singh : Elements of Electronics
- 2. B.L. Theraja : Basic Electronics
- 3. V.K. Mehta : Elements of Electronics
- 4. J.D. Ryder : Networks, Lines and Fields
- 5. J.D. Ryder : Electronic Fundamentals and Applications.
- 6. Millman and Halkias : Integrated Electronics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can

be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Passed Semester V

DEGREE IN	SCINCE		
Programme: <i>I</i>	Year: III	Semester: VI Practical (Lab)	
	Subject: Physics Practical (Lab)		
(Practical)			
	: Course Title: Demonstrative Aspects of Analog and Digita (Practical)	l Electronics	
Course Outco	mes:		
1. Experimenta	al physics has the most striking impact on the industry wherev	ver the instrum	ents are used to
study the Electr	conics and its application in industry and research.		
2. Measuremen	t precision and perfection is achieved through Lab Experimer	nts.	
Credits: 02		Core Compu	lsory
Max. Marks: :	Min. Passing	Marke 17	
Internal (Reco External Prac		winit i assing	, 1 viai k.s. 1 7
External Prac	Voce : 15		
	ectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Торіс		No. of Lecture
Cint	Topic		
	Lab Experiment List		
	1. Transistor Bias Stability		
	2. Comparative Study of CE, CB and CC amplifier		
	3. Clippers and Clampers		
	4. Study of Emitter Follower		
	5. Frequency response of single stage RC coupled amplifier		
	6. Frequency response of single stage Transformer coupled		
	amplifier		
	7. Effect of negative feedback on frequency response of RC		60
	coupled amplifier		
	 8. Study of Schmitt Trigger 9. Study of Hartley oscillator 		
	9. Study of Hartley oscillator 10. Study of Wein Bridge oscillator		
	11. Study of Logic Gates		
	12. Verification of De Morgan's Theorem		
	13. Study of Half Adder		
	14. Study of Full Adder		

Suggested Readings:

1. M. Yadav, Practical Physics, Vol 3, KedarNath Ramnath Publication, 2023.

2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

4. Indu Prakash: Practical Physics

5. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester V.

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

National Education Policy-2020

Syllabus for Sri Dev Suman Uttarakhand University and All Affiliated Colleges for Post-Graduation in Physics.

2023

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
	<u> </u>		Bachelor (Research in Physics)		
	VII		Mathematical Physics	Theory	(04)
			Classical Mechanics	Theory	(04)
			Quantum Mechanics	Theory	(04)
			Communication Electronics	Theory	(04)
Ξ			Practical	Practical	(04)
FOURTH YEAR					
YE	VIII		Atomic and Molecular Spectra	Theory	(04)
щ			Electrodynamics	Theory	(04)
			Astrophysics/Elementary Particle Physics	Theory	(04)
			Condensed Matter Physics	Theory	(04)
			Elective Paper [one from the list] EL3**	Theory	(04)
			Practical	Practical	(04)
			Master in Physics		
	IX		Advanced Quantum Mechanics	Theory	(04)
			Computational Physics/Plasma Physics	Theory	(04)
			Advanced Electronics -I/Astrophysics -I/High Energy	Theory	(04)
			Physics-I/ Spectroscopy-I/ Condensed Matter Physics-I		
	-		Advanced Electronics -II/Astrophysics -II/High Energy	Theory	(04)
			Physics-II/ Spectroscopy-II/ Condensed Matter Physics- II		
			Practical	Practical	(04)
	Х		Nuclear Physics	Theory	(04)
R			Digital Electronics and Computer Architecture	Theory	(04)
FIFTH YEAR			Advanced Electronics -III/Astrophysics -III/High Energy Physics-III/ Spectroscopy-III/ Condensed Matter Physics- III	Theory	(04)
FI			Advanced Electronics -IV/Astrophysics -IV/High Energy Physics-IV/ Spectroscopy-IV/ Condensed Matter Physics- IV	Theory	(04)
			Practical	Practical	(02)

**Elective (04 Credit, one from the list EL3) To be opted in Semester VIII

- **Statistical Physics** 1.
- 2.
- Bio Physics Medical Physics 3.
- Atmospheric Physics 4.
- Nano Materials and Applications 5.

Subject prerequisites: Bachelor in Science with Physics as major subject.

Programme Outcomes (POs):

Students having Degree in *Bachelor (Research in Physics)* should have knowledge of advanced concepts of Physics and ability to apply this knowledge in various fields of academics, research and industry. They may pursue their future career in the field of academics, research and industry.

PO1 Competence in the methods and techniques of calculations using Mathematical Physics, Classical Mechanics, Quantum Mechanics and Communication Electronics. It will develope an analytical skill on an advanced level and will enable the student to have mathematical tools to solve complex problems of Physics. The Programme will motivate the student to know more about the matter, the universe and the recent developments in the field of science. The student will have adequate knowledge to work for the industry,, consultancy, education, and research

PO2 The students would gain substantial knowledge in various branches of physics. The programme will enable the student to explore more in the field of his/her choice like Advanced Electronics, Spectroscopy, Astrophysics and High energy Physics. The student will be well equipped with the knowledge required for different organizations, industry, R& D sector.

Programme specific outcomes (PSOs):

PG IST YEAR/ Bachelor (Research in Physics)

Bachelor (**Research in Physics**) programme provides the student the adequate knowledge, general competence, and analytical skills on an advanced level, needed in industry, consultancy, education, research, or in government organisation.

Programme specific outcomes (PSOs):

PG IIND YEAR/ Master in Physics

- The Master of Science in Physics programme provides student the adequate knowledge to use mathematical tools to solve complex physical problems and have the solid background and experience needed to analyze and solve advanced problems in physics.
- This course would enable the student to acquire scientific skills and the practical knowledge by performing experiments in general physics and electronics.
- The student would also get some research oriented experience by doing theoretical and experimental projects in the last semester under the supervision of faculty.
- The course as a whole opens up several career doors for the students interested in various areas of science and technology in private, public and government sectors. Students may get job opportunities in higher education, research organizations, physics consultancy and many others. Some of the institutions where physics students can start their career are: BARC, DRDO, NPTC, IISc, ISRO, ONGC, BHEL, PRL, NPL, SINP, VECC, IITs, NITs, IIPR etc.

Sem Paper I VII Mathematica I Physics VII Atomic and Molecular	Credi t/hrs 4/60	Paper II Classical Mechanics	Credit/ hrs 4/60	Paper III Quantum	Credi t/hrs	Paper IV	Credit /hrs	Paper V	Credit hrs
I Physics			4/60		1150				
Molecular	4/60			Mechanics	4/60	Communicati on Electronics	4/60		
Spectra	4/00	Electrodynamics	4/60	Elementary Particle Physics	4/60	Condensed Matter Physics	4/60	Elective Paper [one from the list] EL3**	4/60
X Advanced Quantum Mechanics	4/60	Plasma Physics	4/60	Advanced Electronics - I/Astrophysics -I/High Energy Physics-I/ Spectroscopy- I		Advanced Electronics - II/Astrophysi cs -II/High Energy Physics-II/ Spectroscopy -II	4/60		
X Nuclear Physics	4/60	Digital Electronics and Computer Architecture	4/60	Advanced Electronics - III/Astrophysi cs -III/High Energy Physics-III/ Spectroscopy- III		Advanced Electronics - IV/Astrophys ics -IV/High Energy Physics-IV/ Spectroscopy -IV	4/60		
				Internal Asse	ssment	and Externa	al Asse	ssment	
Internal Assess s	ment	Mark		Ex	ternal	Assessment		M	arks
	Quantum Mechanics	Quantum Mechanics X Nuclear Physics 4/60 Internal Assessment	Quantum Mechanics Physics Muclear Physics 4/60 Digital Electronics and Computer Architecture Internal Assessment Mark	Quantum Mechanics 1 Institu Physics X Nuclear Physics 4/60 Digital Electronics and Computer Architecture Internal Assessment	Quantum Mechanics Physics Electronics - U/Astrophysics - I/High Energy Physics-I/ Spectroscopy- I X Nuclear Physics 4/60 Digital Electronics and Computer Architecture 4/60 Advanced Electronics - III/Astrophysic cs - III/High Energy Physics-II/ Spectroscopy- III Image: Computer of the second computer Physics 4/60 Advanced Electronics - III/Astrophysic cs - III/High Energy Physics-III/ Spectroscopy- III Image: Computer of the second computer Physics 4/60 Advanced Electronics - III/Strophysic Spectroscopy- III Image: Computer of the second computer Physics 4/60 Image: Computer Physics-III/Spectroscopy- III Image: Computer of the second computer Physics Image: Computer Physics-III/Spectroscopy- III Image: Computer Physics-III/Spectroscopy- III Image: Computer of the second computer Physics Image: Computer Physics-III/Spectroscopy- III Image: Computer Physics-III/Spectroscopy- III Image: Computer of the second compu	Quantum Mechanics Physics Electronics - I/Astrophysics -I/High Energy Physics-I/ Spectroscopy- I X Nuclear Physics 4/60 Digital Electronics and Computer Architecture 4/60 Advanced Electronics - III/High Energy Physics-III/Spectroscopy- III Image: Computer of the system Architecture 4/60 Advanced Electronics - III/High Energy Physics-III/Spectroscopy- III	Quantum Mechanics Physics Electronics - I/Astrophysics -I/High Energy Electronics - II/Astrophysic es -II/High Energy Nuclear Physics 4/60 Digital Electronics and Computer Architecture 4/60 Advanced Electronics - II/Astrophysic Spectroscopy- I Advanced Electronics - II/High Energy Muclear Physics 4/60 Digital Electronics and Computer Architecture 4/60 Advanced Electronics - III/Astrophysi cs -III/High Energy Advanced Electronics - IV/Astrophysi cs -II/High Energy Energy Energy Physics-II/ Spectroscopy- III Energy Physics-III/ Spectroscopy- III Advanced Electronics - IV/Astrophysi cs -IV/High Energy	A Quantum Mechanics Physics Electronics - I/Astrophysics -I/High Energy Physics-I/ Spectroscopy- I Electronics - II/Astrophysic cs -II/High Energy Physics-II/ Spectroscopy- I Electronics - II/Astrophysic cs -II/High Energy Physics-II/ Spectroscopy- I X Nuclear Physics 4/60 Digital Electronics and Computer Architecture 4/60 Advanced Electronics - III/Astrophysic cs -III/High Energy Physics-II/ Spectroscopy- II Advanced Electronics - IV/Astrophysi cs -IV/High Energy Physics-IV/ Spectroscopy- III 4/60 Image: Computer of the second computer Architecture 4/60 Advanced Electronics - III/Astrophysi cs -IV/High Energy Physics-IV/ Spectroscopy- III High Energy Physics-IV/ Spectroscopy- III 4/60	Quantum Mechanics Hashid Physics Electronics - I/Astrophysics Electronics - II/Astrophysic s - II/High Energy Electronics - II/Astrophysi Nuclear Physics 4/60 Digital Electronics and Computer Architecture 4/60 Advanced Electronics - II/Astrophysic Spectroscopy- I Advanced Electronics - II/Astrophysic spectroscopy- I 4/60 Value 4/60 Digital Electronics and Computer Architecture 4/60 Advanced Electronics - III/Astrophysi ics -IV/High Energy 4/60 Image: Spectroscopy- Physics File 4/60 Electronics - III/Astrophysi ics -IV/High Energy 4/60 Image: Spectroscopy- Physics File Image: Spectroscopy- III File 4/60 Image: Spectroscopy- Physics File File File 4/60 Image: Spectroscopy- Physics File File File File Image: Spectroscopy- Physics

DETAILED SYLLABUS FOR BACHELOR (RESEARCH IN PHYSICS) OR P.G FIRST YEAR

BACHELOR (RESEARCH IN PHYSICS)				
Programme: BA	,	EAR IV	SEMESTER VII/PAPER I	
Subject: Physics				
Course code Course Title: Mathematical Physics				
Course Outcomes				
Students would be able to understand the mathematical methods essential for solving the				
advanced problems in physics. It would be helpful in the development of the ability to apply				
the mathematical concepts and techniques to solve the problems in theoretical and				
experimental physics. The knowledge of mathematical physics would be beneficial in further				
research and development as it serves as a tool in almost every branch of science and				
engineering C	-	ery cranen c		
engineering e	00150.			
Credits: 4			Core	
			Compulsory	
Max. Marks: 100 External Exam: 75			Min.	
Internal assessment: 25			Passing Marks: 36	
Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0				
UNIT TOPIC		No. of		
			Lectures	
UNIT I	Special Functions Series solution of different		•	
	Legendre, Bessel, Hermite, and Laguerre differential equation and related polynomial, physical integral form of polynomials		15	
			15	
	and their orthogonality relations. Generating Function and			
	recurrence relation.			
UNIT II Curvilinear Coordinates and Tensors Curvilinear Coordinate		r Coordinates		
	and various operators in circular, cylindrical and spheric			
	coordinate systems, classification of Tensors, Rank of a			
	Tensor, covariant and contra-variant tensors, symmetric and		15	
	anti-symmetric Tensors, Kronecker delta symbol. Contraction			
	of Tensor, metric Tensor and Tensor densities, c			
	differentiation and Geodesic equation (variational			
UNIT III	Complex Variables Function of complex varial			
	Riemann differential equation, Cauchy's integral theorem, residues and Cauchy's residues theorem, singularities,		15	
	evolution of residues and definite integral.			
UNIT IV	Integral Transforms Fourier integral and Fourier Transform,			
	Fourier integral theorem, finite and infinite inte	ourier integral theorem, finite and infinite integral, Laplace		
transform of elementary function (Dira		ta & Green's 15		
	-	nction), Solution of simple differential equations.		
	,,,		1	

Suggested Readings:	
B. S. Rajput: Mathematical Physics (Pragati Prakashan, Meerut) L. I. Pipes: Mathematical Physics (McGraw Hill)	
ripes. Mathematical rhysics (McGraw Hill)	
P. K. Chattopadhyay: Mathematical Physics (Wiley Eastern, New	
Delhi)	
Arfken.: Mathematical methods for Physics	
Harper Charlie: Introduction to Mathematical Physics	
Mathews and Walker: Mathematical Methods of Physics (Benjamin	
press)	
F	
Horse and Feshbach : Methods of Theoretical Physics (McGraw Hill)	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)		
Programme: 1	BACHELOR (RESEARCH IN PHYSICS) YEA	AR IV	SEMESTER VII/PAPER
			II
~ 1	Subject: Physics		
Course code	Course Title: Classical Mechan	ics	
	Course Outcomes:		
	se students would learn to apply the Newtonian laws usir	-	
formulations	to describe the motions of macroscopic objects using	generalized	l coordinates,
momentum,	forces and energy. The classical mechanics would be help	ful in und	erstanding of
advanced br	anches of modern physics.		
Credits: 4			Core
N / N / N			Compulsory
Max. Mark External Ex Internal ass			Min. Passing Marks: 36
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	TOPIC		No. of Lectures
UNIT I	Mechanics of a System of Particles Constraints and ge	neralized	Lectures 15
			13
	coordinates, D Alembert's principle, Lagrange equa		
	holonomic and non holonomic systems and their app		
	conservation laws of linear momentum, energy and ang	ular	
	momentum.		
UNIT II	Hamiltonian Formulation and Hamilton Jacobi Hamiltonian equations of motion and their physical sign Hamilton's principle, principle of least action, transformations Hamilton-Jacobi theory, Poisson properties of Poisson bracket, Poisson's Theorem, Lagr bracket.	canonical brackets,	15
UNIT III	Dynamics of a Rigid Bodies Motion of a rigid body, space Reference system, angular momentum and Inert Principle axes- Principle moments of Inertia, spinning t Euler angles, Infinitesimal rotations.	ia tensor,	15
UNIT IV	Central Force Problem Action and angle variable integral, small oscillations, Kepler's laws of Planetar and their deduction, scattering in a Central field, Rutherf scattering cross section	y motion	15
N.C. Land	Suggested Readings: oldstein: Classical Mechanics Rana & P. S. Jog: Classical Mechanics au and Lifshitz: Mechanics, Pergamon Sommerfeld : Mech lemic Press	hanics,	

Whittaker: Analytical Dynamics of Particles and Rigid Bodies - Cambridge	
Raychaudhuri: Classical Mechanics, Oxford Bhatia: Classical	
Mechanics, Narosa.	
H.M. Agrawal: Classical Mechanics, New Age International	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN	V PHYSICS)		
Programme: BACH	ELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTE R VII/PAPER	
	Subject: Physics		III	
Course code				
Course code Course Title: Quantum Mechanics Course Outcomes:				
and nuclear) scale of quantum Mech behaviour of all p review of founda	es an understanding of the behaviour and even smaller. Students would le nanics. The course, in fact, plays an obysical systems in the universe. The tions of quantum mechanics, matrix tum mechanics and approximation meth	arn basic postulates and n important role in ex- course includes the stu- formulation of quantum	formulations xplaining the dy of a brief	
Credits: 4			Core	
			Compulsory	
Max. Marks: 100 External Exam: 7 Internal assessme	75 ent: 25		Min. Passing Marks: 36	
Total No. of Lectu	res-Tutorials-Practical (in hours per w	veek): 4-0-0		
UNIT	TOPIC		No. of Lectures	
UNIT I	Non-Relativistic Quantum Mecha Equation Schrödinger's equation, Probability continuity equation, physical int function, orthogonality of eigen f superposition, wave packet, norma equation in three dimensions, centr well and harmonic potentials, harm wave functions, Hydrogen atom.	and current densities, erpretation of wave functions, Principle of alization, Schrödinger's cally symmetric square	15	
UNIT II UNIT III	Operator Formulation of Quantum State vectors and operators in Hilber and Eigen vectors of an operator, I Projection operators, commuting op- Notations, Postulates of Quantum Momentum and Energy representation behavior, Heisenberg, Schrödinger an Theory of Angular Momentum	ert Space, Eigen values Hermitian, Unitary and erators, BRA and KET Mechanics, co-ordinate ons, dynamical nd interaction Pictures	15	
UNIT IV	Orbital Angular momentum operator eigen functions, space quantiz momentum, Pauli's theory of spin, A momentum, ClebschGordan coefficie Approximation Methods Time independent and Time deper Theory Stationary Perturbation, first	entent Perturbation	15	

corrections, WKB approximation methods, connection formula and boundary conditions, Bohr Sommerfield quantization rule, Penetration of potential barrier, Time independent perturbation theory and its applications. Applications of time-dependent perturbation theory for constant perturbation, Fermi Golden rule, Coulomb excitation, Sudden and adiabatic approximation.	
Suggested Readings	
B. S. Rajput: Advanced Quantum Mechanics	
Schiff: Quantum Mechanics	
Thankppan: Quantum Mechanics	
Loknathan and Ghatak Quantum Mechanics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

BACHELOR (RESEARCH IN PHYSICS)						
Programme: BACHELOR (RESEARCH IN PHYSICS) YEAR IV SE VI						
Subject: Physics						
Course code.	Course T	itle: Communica	tion Electronics			
	Course	Outcomes				
systems. The transmission Propagation transmitter, T	This course helps the student to gain basic ideas of the fundamentals of consystems. The course includes Modulation AM and FM (Transmission and receiver transmission, AM detection, AGC, Radio receiver characteristics, FM Propagation of Radio Waves ,Antenna , Fundamentals of image transmitter,Transmission Lines etc.The course may provide the opportunity to vorganization related to communication.					
Credits: 4				Core		
				Compulsory		
Max. Mark External Ex Internal ass	am: 75 essment: 25			Min. Passing Marks: 36		
Total No. of	ectures-Tutorials-Practical (in hours	s per week): 4-0-0				
UNIT		OPIC		No. of Lectures		
UNIT I	UNIT ISemiconductor devices: Diodes, junctions, transistors, field effect devices, homo- and hetero-junction devices, device structure, device characteristics, frequency dependence and applications optoelectronic devices (solar cells, photo-diode, LEDs, opto- coupler).					
UNIT II	UNIT II Combinational Circuits: Boolean algebra, canonical forms of Boolean functions, simplification of Boolean functions (K-map method, tabulation method), don't care conditions. adders & subtractors, encoders, decoders, multiplexers, demultiplexers, digital to analog and analog to digital converters.					
UNIT IIISequential Circuits: Memory element: RS (using NAND and NOF Gate), clocked RS, JK, JKMS, D-type, T-type and edge triggered flip flop; Registers: right, left and left-right both type shift registers Counters: asynchronous & synchronous counters, binary & nor binary counters (use of K- maps), shift counter (Johnson counter) ring counter.				ered ters; non		
UNIT IV		ristics and appl AC & UJT	ications of Sil	icon 15		

-						
1. E	Suggested Readings: lectronic Principles'- A.P. Malvino, TMH Publishing Company					
Li	imited.					
2. 'I	Digital Fundamentals'- T.L. Floyd, Universal Book Stall, New Delhi.					
3. 'I	Digital Principles and Applications'- A.P. Malvino and D.P. Leach,					
T	MH Publishing Company Limited.					
4. 'I	Digital Design'- M. Mano, PHI Private Limited.					
Can be opted by						
	Bachelor in Science with Physics as major subject					
Suggested Continuous Evaluation Methods:						
	Course Prerequisites Bachelor in Science with Physics as major subject					
	Suggested Equivalent Online Courses:					
	Open Learning - Massachusetts Institute of Technology,					
	penlearning.mit.edu/					
2. National Programme on Technology Enhanced Learning (NPTEL),						
https://www.youtube.com/user/nptelhrd						
-	3. SwayamPrabha - DTH Channel,					
nups://w	ww.swayamprabha.gov.in/index.php/program/current_he/8					

	BACHELOR (RESEARCH IN	V PHYSICS)			
Programme: I	BACHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VII/PAPER V		
	Subject: Physics		•		
Course code	Course Title: I				
Student wou and Optics.	Course Outcomes		s of Electronics		
Credits: 4			Core		
Max Mank	s. 100		Compulsory		
Max. Marks External Ex Internal ass	xam: 75		Min. Passing Marks: 36		
	Lectures-Tutorials-Practical (in hours per week):	4-0-0			
UNIT	List of Experiments		No. of Lectures		
	Study of RC circuit with an AC source	using phase diagram	IS.		
	Absorption Spectrum of KMnO4 using Hilger-Nutting Photometer.				
	Young's modulus by Interference method.				
	NPN and PNP Transistor Characteristic base (b) Common emitter configurations/ h – p				
	Study of RC- coupled/ Transformer Co	oupled Amplifier.			
	Study of B-H curve.				
	Study of Amplitude Modulation /Demo	dulation.			
	Verification of the Hartmann's Formula	a.			
	Frank-Hertz experiment.				
	e/m by Zeeman effect.				
	Determination of susceptibility.				
	Study of CRO.				
	Velocity of Ultrasonic waves.				
	Linear Air track.				
	Leacher Wire				

		Car	n be opted by			
	Bachelor in S	Science	with Physics	as major subje	ect	
	Suggested	Contin	uous Evaluat	ion Methods:		
	Bachelor in S		se Prerequisit with Physics	es as major subje	ect	
	Suggest	ed Equ	ivalent Onlin	e Courses:		
1. Virtual	Labs	at	Amrita	Vishwa	Vidyapeetham,	
https://vlab.am	ita.edu/?sub=	1&brcl	n=74			
2. Digital Platf to this lists by i				labs may be	suggested / added	

BACHELOR (RESEARCH IN PHYSICS)					
Programme: BAC	HELO	R (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII/PAPER I	
Subject: Physics					
Course code		Course Title: Atomic and I	Molecular Spectr	a	
the students lear technique in spo students to expl biomedical, indu	Course Outcomes The course structure includes atomic and molecular spectroscopy. As per the course structure the students learn basics concepts of spectroscopic principles and rules. Students would lear technique in spectroscopy and know about their applications. The course is helpful for the students to explore R & D opportunities in various areas of science and technology such a biomedical, industrial and environmental fields.				
Credits: 4				Core Compulsory	
Max. Marks: 10 External Exam Internal assessi	: 75 nent: 1	25 Itorials-Practical (in hours per week): 4-0-0		Min. Passing Marks: 36	
	uics-iu	nonais-rractical (in nours per week). +-0-0			
UNIT		TOPIC		No. of Lectures	
UNIT I	Spec	structure of hydrogen spectrum, L-S an troscopic terms, Hund's rule and time r ision principle.		15	
UNIT II	alkal Norn	li spectra, spin-orbit interaction and fi i Spectra, Equivalent and non-equiv nal and anomalous Zeeman effect, Pasch c effect, Hyperfine structure (qualitative).	alent electrons, en Back effect,	15	
UNIT III	Mole Oppe quan spect (harm		lecules, Born ry idea of nergy, rotational prational spectra		
UNIT IV	Rama Elect band	nic Polarizability, Raman spectra, Qua an spectra, Determination of molec ronic spectra, band system, Progression head formation, Condon parabola, Fran- ciple dissociation energy and its determin	cular structure, and sequences, ack Condon	15	
Suggested Readings: C. B. Banwell: Fundamentals of Molecular Spectroscopy Walker and Stranghen: Spectroscopy Vol. I, II, & III G.M. Barrow: Introduction to Molecular Spectroscopy Herzberg: Spectra of diatomic molecules					

Jeanne L Mchale: Molecular Spectroscopy	
J. M. Brown: Molecular Spectroscopy	
P. F. Bemath: Spectra of atoms and molecules	
J. M. Holias: Modern Spectroscopy	
K. Thyagrajan and A.K. Ghatak: Lasers: Theory and applications	
A Yariv: Quantum Electronics	
M. D. Levenson: Intoduction to non-linear laser spectroscopy	
B. B. Laud: Laser and non-linear optics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYS	(CS)	
Programme: BA	CHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII/PAPER II
	Subject: Physics		11
Course code			
	. Course Title: Electro Course Outcomes:	•	
The study of el	ectrodynamics provides basic foundation for the	student to unde	erstand advance
courses of phy	sics. The course includes Basic equations of Ele	ectromagnetism	, Electrostatics;
Magnetostatics	; Maxwell's equation, Four Vector Formalism	of Maxwell's	Equations Four
vector potential	, electromagnetic field tensor and Quantization of	f electromagnet	ic energy
Credits: 4			Carra
Credits: 4			Core Compulsory
Max. Marks:			Min. Passing
External Exam Internal assess			Marks: 36
	tures-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	TOPIC		No. of Lectures
UNIT I	Electromagnetism		15
	Basic equations; Electrostatics; Magnetostat	ics; Different	
	Systems of Units, Preliminary notations, f		
	Lorentz transformations, time, space and light	like	
	separations, Lorentz invariants, Energy and Mo	omentum.	
UNIT II	Maxwell's Equations		15
	Maxwell's equation, Displacement current, el	ectromagnetic	
	waves in conducting and nonconducting medi	um, Poynting	
	theorem, boundary condition at the interface	of conducting	
	and non conducting media, propagation betwee	n parallel	
	conducting plates. Electromagnetic wave equation	ions	
UNIT III	Four Vector Formalism of Maxwell's Equati	ons	15
	Four vector potential, electromagnetic field te	ensor, Lorentz	
	invariance, Lorentz force, covariant form of		
	equations, four vector current, continuity equ	-	
	invariance of Maxwell equation, electromag	netic energy-	
	momentum tensor, Motion of charge particle	in	
	electromagnetic field, Lorentz force		
UNIT IV	Electromagnetic Radiation		15
	Lienard-Witchert potential, conventional	1 ·	
	Quantization of electromagnetic energy (vin	-	
	Radiation from an Accelerated Charge, I		
	accelerated charge; angular and frequency di		
	the emitted radiation, special cases of acceler	-	
	and perpendicular (circular orbit) to veloci	ty; Larmor's	

	formula and its relativistic Generalization; Bremstrahlung, Cerenkov radiation	
	Suggested Readings	
Jackson:	Classical electrodynamics; Wiley Eastern, New Delhi	
Landau a	nd Lifshitz: Classical theory of fields; Pergameon Press	
Thide: El	ectromagnetic field Theory	
Panofsky	and Phillips: Classical Electricity and Magnetism	
Landau &	Lifshitz: Electrodynamics of Continuous Media	
	Can be opted by	
B	achelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Passed Semester VII with Physics as major	
1. MIT Open Lea https://openlearn	Suggested Equivalent Online Courses: arning - Massachusetts Institute of Technology, ing.mit.edu/	
0	2. National Programme on Technology Enhanced Learning (NPTEL),	
1 5	tube.com/user/nptelhrd a - DTH Channel,	
•	yamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: H	BACHELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTER VIII/PAPER
	Call's A Director	III a
Course ande	Subject: Physics	
Course code	Course Title: Astrophysics	
	Course Outcomes	
The course is	s important for the students to learn about the most fundament	tal building blocks
	and Solar system and hence to understand Stellar system. The the students seeking research opportunities in Astrophysics.	course provides a
Credits: 4		Core Compulsory
Max. Marks External Ex Internal ass	am: 75 essment: 25	Min. Passing Marks: 36
Total No. of I	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ΤΟΡΙΟ	No. of Lectures
UNIT I	The universe and Solar System: Basic idea of universe	
	Classification of the Planets, Orbits, Laws of plane motion. Physical features, surface features, Inte Structure. Atmosphere, Satellites and Rings. Astero Meteors and Meteorites their types, Orbits: physical na and composition. Origin of the minor planets, Observa of meteor showers and sporadic meteors Meteorite crat Origin of Comets, Periodic comets, Physical nat Spectra, Brightness variation. Gas production rates, o and ion tails.	rnal ids, ture tion ers. ure,
UNIT II	Stellar System: Sun as a Star: History of Sun, S interior, the photosphere, the solar atmosph (chromosphere & corona). Salient features of sunsp sun's rotation & solar magnetic field, explanation observed features of sunspots. Distances of stars from trigonometric. Secular and moving cluster parallal Stellar motions, Magnitude scale and magnitude syste Atmospheric extinction. Absolute magnitudes and dista modulus. color index. The Hertzberg- Russell Diagr The colour, Brightness or luminosity, the populatior star. Elementary idea of Binary & Variable Stars. Nuc fission, Nuclear fusion, condition for nuclear reaction stars. Types of galaxies, Structure and features of Milky Way Galaxy	here ots, for the xes. ms. ince am: i of lear i in

UNIT III	Physics of the Stars: Apparent and Mean Position of stars. Effects of atmospheric refraction, aberration. parallax, precession, nutation and proper motion on the coordinates of stars. Reduction from apparent to mean places and vice versa. Spectra of Stars. Distribution of stars in space. Statistical parallaxes. Local standard of rest. Solar motion and its determination. Peculiar velocities. Single and Two- star stream hypothesis. Velocity ellipsoid. Comparison with solar neighbourhood. Bottlinger's diagram. HR diagram. HD and MK spectral classification of stellar spectra. Radiation laws and basic ideas on spectral line formation. Explanation of stellar spectra in terms of Boltzmann and Saha equations. Spectroscopic parallax	
UNIT IV	Fundamental Equations: Equation of mass distribution. Equation of hydrostatic equilibrium. Equation of energy transport by radiative and convective processes. Equation of thermal equilibrium. Equation of state. Stellar opacity. Stellar energy sources. Stellar models: The overall problem and boundary conditions. Russell- Voigt theorem. Dimensional discussions of mass-luminosity law. Polytropic configurations. Homology transformations.	
	Suggested Readings: 1. Principles of Stellar Dynamics, S. Chandrasekhar 2. The Great Universe, G K Sudarshan, S chand Publications. 3. Our Solar System, Joshi and Rana, New Age Publications 4. Galaxies and Universe, K.C. Freeman: 5 The Origin and Evolution of Galaxies, S.D. M. White: 6. Lecture notes on "Dynamics of Stellar Systems", S. M. Alladin: 7. Stars and Galaxies: K. D. Abhyankar (Tata McGraw Hill Publication) 8. Exploration of the Universe: G. Abell 9. The Structure of Universe: Jayant Naralikar 10.Physics of Comets: K.S. Krishnaswamy	

11. Our solar system: A.W. Joshi & N. Rana	
12. Introduction to Astrophysics: Baidyanath Basu	
13.Astrophysics of the Sun: Harold Zirin	
14. The Quiet Sun: Gibson	
15. Stellar Evolution: M. Schwarzschild	
16. S. Chandrasekhar: Stellar Structure: S. Chandrasekhar	
17.Principles of Stellar Interiors - Vol.I and II: Cox and Guili	
18. White Dwarfs, Neutron Stars and Black Holes: Shapiro and Tevkolsky.	
Over he set al her	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BA	CHELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTER VIII/PAPER III b
	Subject: Physics	
Course code	Course Title: Elementary Particle Physics	
	Course Outcomes	
The course is in	mportant for the students to learn about the most fundamental	building block
of matter and r	radiation, interaction among elementary particles and hence to u	inderstand thei
behaviour. The	e course provides a platform for the students seeking research of	opportunities in
high energy phy	ysics.	
Credits: 4		Core
Max. Marks:	100	Compulsory
External Exan		Min. Passing
Internal assess	sment: 25	Marks: 36
Total No. of Lec	ctures-Tutorials-Practical (in hours per week): 4-0-0	
	merra	
UNIT	TOPIC	No. of Lectures
UNIT I	Elementary Particles History of elementary particles,	
	Classification of elementary particles, Fundamental	
	interactions, Resonances, Lepton and Baryon number;	
	Isospin, Strangeness, Hypercharge, Gell - Mann Nishijima	
	relations, Symmetries and conservation laws, Parity, Time	
	reversal and charge conjugation, Parity violation, CP	
	violation in mesons, CPT invariance.	
UNIT II	Unitary Symmetries and Application in the Physics of	15
	Elementary Particles Basics of unitary groups, fundamental	
	representation of SU(2), SU(3) diagonal generators and	
	weights, generators of SU(2) and U(2), weight diagram of	
	fundamental representation of SU(2), generators of SU(3)	
	and U(3), Weight of first fundamental representation of	
	SU(3), shift operators, I, U, V spins, complete weight	
	diagram for the $(1 \ 0)$, $(0 \ 1)$, $(3, \ 0)$, $(1 \ 1)$ and $(2 \ 1)$	
	-	
TINIT III	representations of SU(3), Gell Mann Okubo Mass formula.	15
UNIT III	Method of Young Tableaux and its Applications Young	
	Tableaux and unitary symmetry, standard arrangements of	
	young tableaux, Dimentaionality of the representations of	
	SU(N), Multiplets of SU(N-1), subgroup of SU(N), Baryon	
	multiplets in different representations, general rule and its	
	application for reducing kronecker product of two	
	representations, kronecker product of three particle state	
	vectors.	
		1

r		
	detectors, Ionization chamber, Proportional counter, Geiger-	
	Muller Counter, Scintillation counters and-ray spectrometer,	
	semiconductor detector, Nuclear emulsion technique, Cloud	
	chamber, Bubble chamber	
	Suggested Readings:	
D. H. Pe	rkins: Introduction to High Energy Physics, Cambridge	
Universit	y Press, 2000	
S. N. Gh	oshal: Atomic and Nuclear Physics, S. Chand and Company	
Ltd, 1994		
D. Griffit	hs: Introduction of Elementary Particles	
DB Licht	tenberg: Unitary Symmetry and Elementary Particles,	
	c Press, 1978	
Hughes	Elementary Particles	
Tugiles.	Elementary Tarticles	
D1.44	Weisland, The south of Newland Director	
Blatt and	Weiskopf: Theoretical Nuclear Physics	
FE Close:	: Quarks and Patrons	
P. P. Cher	ng and G. LF Li: Gauge Field Theory:	
W. E. Bu	rcham: Nuclear Physics	
R. M. Si	ngru: Introduction to experimental nuclear physics	
E. Segre:	Experimental nuclear physics	
	Can be opted by	
B	achelor in Science with Physics as major subject	
	Suggested Continuous Evolution Matheday	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VII with Physics as major	
	Suggested Equivalent Online Courses:	
	arning - Massachusetts Institute of Technology,	
https://openlearni	ing.mit.edu/	
5. National Progr	ramme on Technology Enhanced Learning (NPTEL),	
-	tube.com/user/nptelhrd	
	a - DTH Channel,	
	yamprabha.gov.in/index.php/program/current_he/8	
nups.//www.sway	yampraona.gov.m/muex.pnp/program/cuttent_ne/o	

	BACHELOR (RESEARCH IN PHYSI	CS)	
Programme: BA	CHELOR (RESEARCH IN PHYSICS)		SEMESTER VIII/PAPER IV
	Subject: Physics		
Course code	Course Title: Condensed M	Aatter Physics	
structures, sym using X-ray di lattice vibration	Course Outcomes: vill be able to develop an understanding of the lat immetries. The student would gain insight about the ffraction in crystals. This course also includes on hal properties and also superconductivity. The course I material science and technology.	he interior of t elastic waves,	the substances phonons, and
Credits: 4			Core Compulsory
Max. Marks: External Exar Internal asses	n: 75 sment: 25		Min. Passing Marks: 36
Total No. of L	ectures-Tutorials-Practical (in hours per week): 4-	0-0	
UNIT	ТОРІС		No. of Lectures
UNIT I	Symmetry and Reciprocal Lattice: Crystal symmetry elements, Miller indices, type, fundamental type of direct latt dimensional and 3 dimensional lattice, D Waves by Crystal: The Bragg law, Four Reciprocal lattice Vectors, Diffraction Brillouin Zones, Reciprocal lattice (exampl fcc, hcp lattices), Crystal structure facto Atomic form factor, Scattering factors, diffraction maxima, extinction due to lattice	tices i.e. 2 Diffraction of ier Analysis, Condition. le of sc, bcc, r (bcc, fcc), Intensity of	15
UNIT II UNIT III	Lattice Vibrations: Concept of dispersion relation, quanti lattice vibrations (Phonons), normal modes coordinates, longitudinal and transverse vibration, modes of vibration of monate diatomic lattices. Density of states (Phonons Free Electron theory of metals: Free electron theory of metals, free electron dimensional box, free electron gas in three	& normal modes of omic and s). on gas in one e dimensional	
UNIT IV	box-filling up of energy bands, Density of e Fermi energy, Average kinetic energy average velocity.		15
	Thermal properties of solids: Specific heat of solids, Classical theory, Ei The Debye theory, Born's modification of theory. Heat capacity of diatomic latti conductivity. Lattice thermal conductivity. free path. Phonon-phonon scattering-t processes. Thermal Expansion. Origin expansion. Gruneisen relation	of the Debye ces. Thermal Phonon mean he umklapp	

Suggested Readings	
Suggesteu Reaulings	
A. J. Dekker: Solid State Physics	
Ashcroft and Mermin: Solid State Physics	
S.O. Pillai: Solid State Physics	
R. L. Singhal: Solid State Physics	
C. Kittle: Introduction to Solid State Physics	
Verma &Srivastava: Crystallography for Solid State Physics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

D	BACHELOR (RESEARCH IN PE		
Programme:	BACHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII/PAPER V
	Subject: Physics		
Course code	Course Title: PRA	CTICAL	
	Course Outcomes:		
The student	will have adequate knowledge to perform the ex	periments of c	lifferent fields of
physics wit	h clear understanding of the theory behind the exp	periment.	
Student wil	l know about various electronic components and	learn to desig	gn some basic
electronic c	ircuits and study their applications.		
Credits: 4			Core
Max Man	za: 100		Compulsory
Max. Marl External E Internal as			Min. Passing Marks: 36
	Lectures-Tutorials-Practical (in hours per week): 0-0	-4	l
UNIT	List of Experiments		No. of Lectures
01111	1. Study of the Phase measurement by su	perposition of	
	voltages with LCR Circuits.	perposition of	
	2. Study of different oscillators (Hartely,	colpit, Weinbri	idge
	oscillators etc.).	1 /	60
	3. Study of an electronically regulated power	er supply.	
	4. Study of negative Feed- back Amplifier.	11.2	
	5. Determination of wavelength (λ) and wa	avelength	
	difference $(\Delta \lambda)$ by Michelson Interferom	eter.	
	6. Study of different type of Resistances and	d Diodes.	
	7. Study of Photo Voltaic Cell.		
	8. Stefan's Constant		
	9. FET characteristics		
	10. Fresnel's Law		
	11. Cauchy Formula		
	12. Lattice Dynamic Kit		
	13. Study of Logic gates		
	14. Detection Efficiency of Diode		
	15. Fabry – Perot Interferometer16. Four Probe method		
	Can be opted by		
	Bachelor in Science with Physics as major subj	iect	
	Suggested Continuous Evaluation Methods:		
	Course Prerequisites		
	Bachelor in Science with Physics as major subj	iect	
	Suggested Equivalent Online Courses:		
1. Virt	ual Labs at Amrita Vishwa	Vidyapeeth	am,
https://vlab.	amrita.edu/?sub=1&brch=74		
	Platforms /Web Links of other virtual labs may	v be suggeste	y d ∕
-	s lists by individual Universities	,	
auted to the			

BACHELOR (RESEARCH IN PHYSICS)		
Programme		MESTER VIII
8		.3(1)
	Subject: Physics	
Course cod	e Course Title: Statistical Physics	
	Course Outcomes:	
The course	e structure includes different aspects of statistical Mechanics and S	Statistical models
for phase	transition. Study of this course will enable students a clear u	inderstanding of
-	nd Quantum Statistics.	C
Credits: 4		Elective
Max. Mar		Min. Passing
External I	Exam: 75 assessment: 25	Marks: 33
	f Lectures-Tutorials-Practical (in hours per week): 4-0-0	
10tal NO. C	Locures - Luchais - Lacucai (in nouis per week). 4-0-0	
UNIT	ТОРІС	No. of Lectures
UNIT I	Foundation of Statistical Mechanics Microscopic and	15
Under 1	macroscopic states, Density of states, Micro-canonical,	
	Canonical and grand canonical ensembles, Canonical ensemble	
	and Gibb's distribution, Boltzmann–Planck method, Partition	
	function and statistical definition of thermodynamic quantities,	
	Computation of partition functions of some standard systems.	
UNIT II	Statistical Properties System of linear harmonic oscillators in the	15
	canonical ensemble; Grand canonical ensemble and its partition	
	function; Chemical potential; Partition function and distribution	
	for perfect gas; Gibb's paradox; Free energy, entropy, Equation	
	of state and specific heat determination of perfect gas.	
UNIT III	Statistical models Theory of phase transitions, First order phase	15
	transition, Second order phase transitions and higher order phase	10
	transitions (elementary discussion), Ising model, One	
	dimensional (with exact solution), Two dimensional (with exact	
	solution) & three dimensional model (elementary idea), Landau	
	theory of phase transition, Weiss theory of Ferro-magnetism,	
	Heisenberg model. Virial equation of states.	
UNIT IV	Quantum Statistics Bose-Einstein and Fermi- Dirac	15
	distributions, Degeneracy, Gas degeneration, Degenerate Bose	
	gas, Bose Einstein condensation, Highly degenerate B-E and F-	
	D gases; examples of Molecular Hydrogen, liquid helium and	
	electron gas in metals.	
	Suggested Readings	
Quantum M	lechanics: A. S. Davidov	
-	Iechanics: B. S. Rajput	
-	Iechanics: Paul Roman	
	Chemistry: Glastohn	
	Aechanics: Landau and Lifshitz	
	Aechanics: Pathira	
Statistical N	Aechanics: Huang	
	Can be opted by	
	Bachelor in Science with Physics as major subject	

Suggested Continuous Evaluation Methods:	
Course Prerequisites Passed Semester VII with Physics as major	
Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BACHELO		EMESTER
		III EL3(2)
Course code	Subject: Physics Course Title: Bio Physics	
Course code	Course Outcomes:	
Riophysics is the fig	ld that applies the theories and methods of physics to und	orstand how
- ·	ork. The student's knowledge can be used in the sector relation	
and Medical .	ork. The student's knowledge can be used in the sector relation	er to health
Credits: 4 Max. Marks: 100		Elective Min.
External Exam: 75		Passing
Internal assessment:		Marks: 36
Total No. of Lectures-T	Tutorials-Practical (in hours per week): 4-0-0	
	TODIC	No. of
UNIT	ΤΟΡΙϹ	No. 01 Lectures
UNIT I	Basic Concepts in Biophysics	15
	Elementary ideas about the DNA structure, Forces	3
	stabilizing DNA and protein structure, sugar-phosphate	
	backbone, nucleosides and nucleotides, three dimensiona	
	DNA structure, RNA. Proteins: primary, secondary	
	tertiary and quaternary structures, enzymes and their	
	catalytic activity, DNA and protein folding, DNA	
	denaturation, replication, mutation, intercalation,	
	neurotransmitters, membranes.	15
UNIT II	Technique for The Study of Biological Structure and Function	15
	Application of experimental techniques of light scattering	
	(tomography), FTIR and Raman spectroscopy, absorption	
	and fluorescence spectroscopy/ microscopy, anisotropy,	
	optical activity, circular dichroism, electrophoresis,.	
UNIT III	Photobiology	
	interaction of light with cell and tissues, Photosynthesis	
	human eye and vision optical biopsy, optical biosensors	,
	Laser tweezers and Laser Scissors Photo-dimerization,	
	Photodynamic therapy.	15
UNIT IV	Radiation Effects on Biological SystemsHigh doses received in a short time, Low-level doses	15
	limits, direct ionization of DNA, radiation damage to	
	DNA, Biological effects (Genetic, Somatic, Cancer and	
	sterlity). Bio-imaging: Ultrasound, MRI imaging, confocal	
	fluorescence imaging and X-ray.	
	Suggested Readings:	
Essentials of B	iophysics: P. Narayanan.	
Basic Molecula	r Biology: Price.	

Quantum Mechanics of Molecular Conformations: Pullman (Ed.).	
Non-linear Physics of DNA: Yakushevich.	
Biological Physics: Nelson. Spectroscopy of biological systems	
Modern Spectroscopy: J.M. Hollas.	
Transmission Electron Microscopy of Metals: Gareth Thomas	
Elements of X-ray Diffraction: Bernard Dennis Cullity.	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

BACHELOR (RESEARCH IN PHYSICS)		
Programme: BAC	HELOR (RESEARCH IN PHYSICS) YEAR IV SEME EL3(3	STER VIII)
	Subject: Physics	
Course code	Course Title: Medical Physics	
processes and all Physics uses m biological organ Physics of Resp and also Equipr	Course Outcomes: is a branch of science that uses the methods of physics to study so working of the instruments and machines used in Medical Science athematical laws to explain the natural world, and it can be isms and systems to gain insight into their workings. The course iratory and Cardiovascular System, Electricity in the Body and Science's and Modern Medicines .The course opens future prospect Id of Medical Science .	e applied to e includes ound/Light
Credits: 4		Elective
Max. Marks: 10 External Exam: Internal assessm	: 75	Min. Passing Marks: 36
Total No. of Lectu	ures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of Lectures
UNIT I	Mechanics of Human Body	15
	Static, Dynamic and Frictional forces in the Body, Composition,	
	properties and functions of Bone, Heat and Temperature,	
	Temperature scales, Clinical thermometer, Thermography, Heat	
	therapy, Cryogenics in medicine, Heat losses from Body,	
	Pressure in the Body, Pressure in skull, Eye and Urinary Bladder.	
UNIT II	Physics of Respiratory and Cardiovascular System	15
	Body as a machine, Airways, Blood and Lungs interactions,	
	Measurement of Lung volume, Structure and Physics of	
	Alveoli, breathing mechanism, Airway resistance, Components	
	and functions of Cardiovascular systems, work done by Heart,	
	Components and flow of Blood, Laminar and Turbulent flow,	
	blood Pressure, direct and indirect method of measuring, Heart	
	sounds.	
UNIT III	Electricity in the Body and Sound/Light In Medicine Nervous system and Neuron, Electrical potentials of Nerves,	15
	Electric signals from Muscles, Eye and Heart, Block diagram	
	and working to record EMG, Normal ECG wave form,	
	Electrodes for ECG, Amplifier and Recording device, Block	
	diagram and working to record ECG, Patient monitoring, Pace	
	maker. General properties of sound, Stethoscope, Generation,	
	detection and characteristics of Ultrasound, Ultrasound imaging	
	technique, A scan and B scan methods of ultrasound imaging,	

	properties of light, Applications of visible UV, IR light, and	
	Lasers in medicine, Microscope, Eye as an optical system,	
	Elements of the Eye, Ophthalmology Instruments.	
UNIT IV	Diagnostic X-Rays and Nuclear Medicine	15
	Production and properties of X-rays, Basic Diagnostic X-ray	15
	Machine, X-ray image, Live X-ray image, X-ray computed	
	Tomography, Characteristics of Radio activity, Radioisotopes	
	and Radio nuclides, Radioactivity sources for Nuclear	
	medicine, Basic Instrumentation and clinical applications,	
	Principles of Radiation Therapy, Nuclear medicine imaging	
	devices, Radiation sources.	
	Suggested Readings:	
Medical Ph	hysics by Department of Physics, St. Joseph's College, Trichy-2.	
Sons. Hand book	hysics by John R. Cameron and James G. Skofronick, John Wiley & a of Biomedical Instrumentation : R.S.Khandpur, Tata McGraw Hill Co., Delhi, 1987.	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evolution Methoday	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Passed Semester VII with Physics as major	
	Suggested Equivalent Online Courses:	
-	rning - Massachusetts Institute of Technology,	
https://openlearnin	0	
•	amme on Technology Enhanced Learning (NPTEL),	
	ube.com/user/nptelhrd	
3. SwayamPrabha		
https://www.sway	/amprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BA	CHELOR (RESEARCH IN PHYSICS) YEAR IV SI	EMESTERVIIIE 3(4)
	Subject: Physics	
Course code	Course Title: Atmospheric Physics	
Environmental j work in Metere	Course Outcomes: troduces students to Earth- Atmosphere and Meteorology The pollution and climate change etc. The course is useful for the stud ological department or wants to pursue his/her career in the field urse is also very important for R& D purposes.	dents who want to
Credits: 4		Elective
Max. Marks: External Exam Internal asses	m: 75	Min. Passing Marks: 33
Total No. of Le	ctures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No of Loctore
UNIT UNIT I	Introduction to Earth Atmosphere and Meteorology	No. of Lectures
UNIT II	Elementary concept of atmospheric sciences, atmosphere and it composition, Thermal and pressure variation in earth atmosphere, Thermal structure of the troposphere, stratosphere, mesosphere and ionosphere, Hydrostatic equation, spectral distribution of the solar radiation, Green house effect and effective temperature of earth. Meteorological process and different system, local winds, monsoons, fogs, clouds, precipitation, Cyclones and anti- cyclones, thunderstorms, Mountain Meteorology Atmospheric Dynamics and Thermodynamics Introduction to atmospheric dynamics, Basic conservation laws, Applications of the basic equations, circulations and vorticity, Atmospheric oscillations, The general circulations, Tropical dynamics, Thermodynamical considerations, Adiabatic and isothermal processes, equation of state for dry and moist air, Humidity parameters, laws of thermodynamics, Entropy, Thermodynamic diagram and their uses.	15
UNIT III	Environmental pollution and climate change	15
	Atmospheric pollution and chilate change Atmospheric pollution, type of pollutants, various sources of emissions, Trace gages, Production and loss processes of stratosphere ozone, Tropospheric ozone, Role of trace gases and their budget, motion of air-masses (back-air trajectory), tools for modeling (Box model and 3-D model), Atmospheric aerosols, classification and properties, concentration and size distribution, Absorption and scattering of radiation, optical phenomena in atmospheric, Modeling for aerosols, Estimations of radiative forcing. Definition of climate long term changes, possible causes of climate change-External and internal, General idea of internal dynamical processes of the atmosphere, climate modeling, Review of various climate models.	

UNIT IV	Instrumentation and Observational Techniques	15
	Convectional measurements of pressure, temperature, humidity,	
	wind speed and direction, sunshine duration, radiation clouds,	
	upper air pressure, temperature, humidity and wind	
	measurements, Polit balloons, radiosonde, dropsonde,	
	ozonesonde, GPS sonde. Application of radars to study the	
	atmospheric phenomenon, LIDAR, SONAR, RASS (Radio-	
	acoustic sounding system), Observational technique for aerosol.	
	Suggested Readings:	
	S. Pettersen: An Introduction to meteorology	
	H. R. Byer: General Meteorology Miller, Thompson and Paterson: Elements of meteorology	
	J. M. Wallau and P. V. Hobbs: Atmospheric Science	
	J. A. Ratchiffe: Physics of upper atmosphere	
	R. B. Stull: An introduction to boundary layer Meteorology	
	D. H. Lenschow: Probing the atmospheric boundary	
	D. H. Lechow: Intruments and Techniques for probing the atmospheric boundary layer	
	A.A. Tsonis: An introduction to atmospheric Thermodynamics	
	H. J. Critchfield: General Climatology G. T. Trewartha: An introduction to climate	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Passed Semester VII with Physics as major	
1 MIT Oper	Suggested Equivalent Online Courses: n Learning - Massachusetts Institute of Technology,	
-	learning.mit.edu/	
	C	
	Programme on Technology Enhanced Learning (NPTEL),	
•	youtube.com/user/nptelhrd	
•	Prabha - DTH Channel,	
https://www	.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BA		EMESTERVIIIE 3(5)
	Subject: Physics	
Course code	Course Title: Nano Materials and Application	ons
	Course Outcomes:	
	troduces the essence of nano materials, their synthesis, and cha	
	npletion of the module students should also be able to under	
	electron transport phenomenon in nanostructures. It also cove	rs few important
applications of	nano materials used in this technological era.	
Credits: 4		Elective
Max. Marks:		Min. Passing
External Examination External Examination External Examination Exa		Marks: 33
	ctures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of Lectures
UNIT I	Nanoscale Systems	15
	Density of states (1-D,2-D,3-D). Length scales in physics,	
	Nanostructures: 1D, 2D and 3D nanostructures (nanodots,	
	thin films, nanowires, nanorods), Band structure and density	
	of states of materials at nanoscale, Size Effects in nano	
	systems, Applications of Schrodinger equation- Infinite	
	potential well, potential step, potential box, quantum	
	confinement of carriers in 3D, 2D, 1D nanostructures and its	
	consequences.	
	consequences.	
UNIT II	Synthesis of Nanostructure Materials	15
	Metals, Metal Oxide, Carbon based nanomaterials CNT,	
	C60, graphene. Top down and Bottom up approach,	
	Photolithography. Ball milling. Gas phase condensation.	
	Vacuum deposition. Physical vapor deposition (PVD):	
	Thermal evaporation, Chemical vapor deposition (CVD).Sol-	
	Gel. Spray pyrolysis. Hydrothermal synthesis. Preparation	
	through colloidal methods. MBE growth of quantum dots.	
	X-Ray Diffraction. Optical Microscopy. Scanning Electron	
	Microscopy. Transmission Electron Microscopy. Atomic	
	Force Microscopy. Scanning Tunneling Microscopy.	
UNIT III	Optical Properties	15
	Concept of dielectric constant for nanostructures and	
	charging of nanostructure. Quasi-particles and excitons.	
	Excitons in direct and indirect band gap semiconductor	
	nanocrystals. Quantitative treatment of quasi-particles and	

	excitons, charging effects. Radiative processes: General formalization-absorption, emission and luminescence.	
	Optical properties of heterostrctures and nanostructures.	
	optical properties of neterosticitates and hanosticitates.	
UNIT IV	Electron Transport and Applications of Nanoparticles	15
	Carrier transport in nanostrcutures. Coulomb blockade	
	effect, thermionic emission, tunneling and hopping	
	conductivity. Defects and impurities: Deep level and surface	
	defects.	
	Applications: Applications of nanoparticles, quantum dots,	
	nanowires and thin films for photonic devices (LED, solar	
	cells). Single electron transfer devices (no derivation). CNT	
	based transistors. Nanomaterial Devices: Quantum dots	
	heterostructure lasers, optical switching and optical data	
	storage. Magnetic quantum well; magnetic dots -magnetic dots -magnetic	
	data storage. Micro Electromechanical Systems (MEMS),	
	Nano Electromechanical Systems (NEMS).	
	Suggested Readings:	
C. P. Poole, Jr.	. Frank J.Owens, Introduction to Nanotechnology (Wiley	
IndiaPvt. Ltd.)		
S.K. Kulkarni,	, Nanotechnology: Principles & Practices (Capital Publishing	
Company)		
K.K. Chattopa	dhyay and A. N. Banerjee, Introduction to Nanoscience and	
	HI Learning Private Limited).	
	Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A.	
	, Cambridge University Press.	
Richard Booke	er, Earl Boysen, Nanotechnology (John Wiley and Sons).	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VII with Physics as major	
	Suggested Equivalent Online Courses:	
_	Learning - Massachusetts Institute of Technology,	
https://openlea	0	
	ogramme on Technology Enhanced Learning (NPTEL), outube.com/user/nptelhrd	
	bha - DTH Channel,	
•	vayamprabha.gov.in/index.php/program/current_he/8	
nups.// w w w.sv	an problem in the second program current_no/o	

	MASTER IN PHYSICS	
Programme: MAS	TER IN PHYSICS YEAR V	SEMESTER IX PAPER I
	Subject: Physics	
Course code	Course Title: Advanced Quantum Mechani	cs
The course incl	Course Outcomes:	lativistia mara
	ludes the study of scattering theory, identical particles, re	
· ·	uantization of wave fields. The course would describe th	
	tter and energy at subatomic level. In particular, theory of sca	
-	ollision between a quantum mechanical particle and target.	-
-	tum mechanics enables the students to understand the behav	•
	eeds comparable to that of light. The knowledge of this	
foundation for p	ursuing research in Quantum Field Theory and High Energy phy	vsics.
Credits: 4		Core
Cieuns. 4		Compulsory
Max. Marks: 10		Min.
External Exama Internal assessm		Passing Marks: 36
	ures-Tutorials-Practical (in hours per week): 4-0-0	Marks. 30
UNIT	TOPIC	No. of
		Lectures
UNIT I	Free particle Dirac equation	15
	Discrepancies faced by Schrödinger equations, Klein-	
	Gordon equation and its drawbacks, Dirac's equation for a	
	free particle, Dirac matrices, covariant form of Dirac	
	equation, Probability and current densities, Free particle	
	solutions of Dirac equation, Non conservation of Orbital	
	Angular momentum and idea of spin, Interpretation of	
	negative energy and hole theory	
UNIT II	Dirac particle in Electromagnetic Fields	15
	Dirac equation in electromagnetic fields, Magnetic moment	
	of charged particle, Gauge invariance of Dirac equation in	
	electromagnetic fields, Non- relativistic correspondence of	
	Dirac equation; Pauli equation, Adjoint spinors,	
	Symmetries of Dirac Equation: Parity, Time reversal and	
	Charge Conjugation; Lorentz covariance of Dirac	
	Equation, , Bilinear covariants	
UNIT III	Identical Particles and Quantum Field Theory	15
	Identical particles, exchange degeneracy, symmetric and	
	anti symmetric functions for many particle system	
	Classical Fields, Schwinger's action principle, Lagrangian	
	and Hamiltonian densities, Field equation, quantum	
	structure of free fields and the particle concept,	
		1

	Quantization relations, Quantization of non relativistic	
	Schrödinger matter field, System of identical bosons and	
	fermions, Commutation and anti-commutation relations,	
	Occupation number representation, creation and	
	annihilation operators.	1.
UNIT IV	Quantum Theory of Scattering	15
	Scattering Theory, Scattering cross section, method of	
	partial wave analysis, phase shift, Optical theorem,	
	scattering length, effective range theory; low energy	
	scattering, Resonance, scattering from a square potential	
	well and a rigid sphere, Born approximation, Validity of	
	Born approximation, Born approximation through time	
	dependent perturbation, its application to square well	
	potential.	
Da II	Suggested Readings: wydov: Quantum Theory Messiah : Quantum Mechanics Vols. I&	
Ra	jput B. S.: Advanced Quantum Mechanics	
	pman P.: Advanced Quantum Mechanics Trigg: Quantum echanics	
	ankappan V. K.: Quantum Mechanics Sakurai J.J.: Quantum echanics	
	Can be opted by	
Ba	achelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Suggested Continuous Lyanaaton methods.	
	Course Prerequisites	
	Passed Semester VIII with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Open Leas	rning - Massachusetts Institute of Technology,	
https://openlearni		
	amme on Technology Enhanced Learning (NPTEL),	
-	ube.com/user/nptelhrd	
3. SwayamPrabha	*	
-	amprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS		
Programme: MA	STER IN PHYSICS YEAR V	SEMESTER IX PAPER II a
	Subject: Physics	
Course code	Course Title: Computational I	Physics
with knowledg	Course Outcomes: Computational Physics has been framed to equip the stude e of roots of equation, interpolation, curve fitting, nume gration, solution of ordinary differential equations and probab	rical differentiation,
Credits: 4		Core Compulsory
Max. Marks: External Exan Internal assess	n: 75	Min. Passing Marks: 36
	tures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	TOPIC	No. of Lectures
UNIT I	Roots of Algebraic and Transcendental Equatio Element of computational techniques: roots of function Interpolation, Extrapolation, One point and two-po- iterative methods such as bisection method and New Raphson methods.	ons, oint
UNIT II	Integration and Differential:	15
	Integration by Trapezoidal and Simpson's rule, Solution of first order differential equation using Runge-Kut methods, Finite difference methods. Data Interpretation and Error analysis: Dimensional analysis, Precision and accuracy, error analysis, Propagation and errors.	ta on
UNIT III	Least square fitting:	15
	Least square fitting, Linear and nonlinear curve fitting, square test. Random numbers: Introduction to rand numbers, Monte Carlo method for random num generation. Probability Theory: Elementary probabi theory, Random variables, Binomial, poisson and norn distributions, Central limit theorem.	Chi om ber lity
UNIT IV 1. David S A Practi	conserving pseudopotentials. Numerical solutions of Ko Sham equations, Diagnolization procedure, SCF cycles	orm hn- and and age of ıral
2. Gunn L	Lee, Computational Materials Science: An Introduction, ress 2011) 3.	

3.	C. Kittel, Introduction to Solid State Physics (Wiley India (P)	
	Ltd., New Delhi, India) 2007	

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS			
Programme: MAS	STER IN PHYSICS	YEAR V	SEMESTER IX PAPER II b
	Subject: Physics		
Course code	Course Title: Plasma Physics		
plasma. Plasma plasma plasma plasma.	Course Outcomes: des Magneto Hydrodynamics, Plasma Propagati ohysicists study plasmas, which are considered a and interplanetary space .The knowledge acquire sysics and thus career prospects are bright in the fie	distinct state o d by the studer	f matter and occu
Credits: 4			Core Compulsory
Max. Marks: 100 External Exam: 75 Internal assessment: 25 Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0			Min. Passing Marks: 36
100011001012000			
UNIT	TOPIC		No. of Lectures
UNIT I	Introduction to Plasma		15
	Elementary concept of plasma: Debye Shielding Plasma parameters, Drift of guiding center, Gradien drift, Curvature drift, Magnetic mirror, Plasma confinement		
UNIT II	Magneto-Hydrodynamics and Fluid Plasm	na	15
	Plasma Oscillation, Fluid equations for Continuity equation, Wave Propogation in plasma, Magneto Hydrodynamics, Hy description of Plasma: fundamental equation convective derivative, hydromagnetic wave sonic and Alfven waves.	unmagnetized drodynamical n, Concept of	
UNIT III	Magneto Plasma		15
. –	Wave phenomena in Magneto plasma: Phase velocity, group velocity, cutoff, r	resonance for parallel and	
UNIT IV	Electromagnetic Wave Propagation in Pla Propagation at finite angle and CM Propagation through ionosphere and magnet Derivation of moment Equation from Equation, Momentum balance equation, Equ state, Two-fluid equations, Plasma resistivity Suggested Readings: Mackson: Classical Electrodynamics; Wiley Estern, 1	IA diagram, osphere Boltzmann uations of y	15

Bittencourt: Plasma Physics Chen: Plasma Physics	
Robert J Goldston and Paul H. Rutherford: Introduction to Plasma Physics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
4. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
5. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
6. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

		MASTER IN	PHYSICS		
Programme: M	ASTER IN PHYS		YEAR V	PAP	ESTER IX ER III a cialization r)
		Subject: I			
Course code			rse Title: Advanced E	Electronics- 1	
devices and cir Analog system students to lea	rcuits . The course as and non-linear a rn basics of integr	includes the study analog systems. The rated circuit technol	of the construction a of IC technology, Op e course is of much logy which has wide tems, digital instrumen	erational amp practical pu applications	plifier as linear prose for the
Credits: 4				Core	Compulsory
Max. Marks External Exa Internal asse	nm: 75 ssment: 25	ractical (in hours per	r week): 4-0-0	Min	Passing ks: 36
Total No. of E		uetieur (in nours per	week). 100		
UNIT		TOP	IC		No. of Lectures
	system, transit and current in propagation co and attenuation loss less, disto termination by	time effect, calcul relation on radio instant and its physical n, characteristic in portion less and low v (i) zero load on ii) some resistar	smission line as a tw ation of line paramet frequency transm sical significance, lin npedance, reflection w loss transmission short circuit line, nce, (iv) complex	ters, voltage ission line, ne distortion coefficient, lines, line (ii) infinite	
UNIT II	Propagation of sky wave pro Eccles-Larmor	of Radio Waves: opagation (ionosp theory, magneto	Ground wave, space here & it's differe ionic theory, Apple num usable frequency	ent regions, eton-Hartree	
UNIT III	Transmitters: amplitude mod methods), am detectors), E synchronous discrimination signal (filter &	Need for mod lulators (square la plitude demodula DSB-SC system detector), SSB-SC method of modu phase discriminat	modulation and F lulation, type of w diode & collector tors (square law & (balanced modu c signal (frequency lation and demodula ion method of modu he, AGC), AM transn	modulation, modulation & envelope alator and & phase ation), VSB lation), AM	
UNIT IV	Antenna : Ra potential and magnetic field power radiated gain of the an	diation, flared tra electric scalar po s generated by He l by Hertz dipole	nsmission line, mag otentials, different e ertz dipole, near and e, radiation pattern, nna, HF antenna, Ya	netic vector electric and 1 far fields, Directivity,	

Suggested Readings:	
Antennas and Wave Propagation', J.D. Kraus, R.J. Marhefka and A.S. Khan, TMH	
'Communication Systems: Analog & Digital', R.P. Singh and S.D. Sapre, TMH	
Antenna & Wave Propagation', K.D. Prasad, Satya Prakashan, New Delhi. Mcgraw Hill	
Millman and Halkias: Electronic Fundamentals & Applications, Tata Mcgraw Hill	
Millman and Halkias: Integrated Electronics	
K.R. Botkar: IntegratedCircuits, Khanna Publishers G.K.	
Mithal and Ravi Mittal: Electronic Devices & Circuits, Khanna Publishers	
Roychaudhary and Jain: Operational Amplifier & Linear Integrated Circuits	
V.K. Mehta: Electronics for Scientists & Engineers Robert J Goldston and Paul H. Rutherford: Introduction to Plasma Physics	

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	-
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSI	CS	
Programme:	MASTER IN PHYSICS	YEAR V	SEMESTER IX
			PAPER III b
			(specialization paper
	Subject: Physics		Paper
Course code	· ·	Title: Astrophysics –I	
	Course Outcomes:		
	would be important to understand the spheri	•	
	sics, and physics of solar system and extra	-	-
	to understand the optics of the different		uments such as:
telescopes,	CCD camera etc. It has wide spared in use of	R& D sector.	
Credits: 4			Core
Max. Mark	ze• 100		Compulsory Min.
External E			
	sessment: 25		Passing Marks: 36
Total No. of	Lectures-Tutorials-Practical (in hours per week):	4-0-0	
UNIT	ТОРІС		No. of
			Lectures
UNIT I	Spherical Astronomy Celestial sphere,	Celestial coordina	te 15
	system (equatorial and alt-azimuth): altitu	ide and azimuth, rig	ht
	ascension and declination, hour angle, sid	ereal time, mean sol	ar
	time, summer and winter solstice,	seasons. Distan	ce
	measurements: AU, parsec, standard	d candles, distand	ce
	measurement by geometric means (paralla	ax, distances to open	
	clusters).		
UNIT II	Solar System Idea of solar system, Study	y of planets and the	ir 15
	satellites, Earth-Moon system, tidal force		
	comets and their origin, composition and		
	extra solar planets and their detection.	5	
UNIT III	Telescopes: Basic Optics, Types of	telescopes. Telescon	be 15
	mounting systems. Optical telescopes, Inf		
	ray and Gamma-ray telescopes. Schm		
	telescopes. Design and construction o	-	
	telescopes. Active and adoptive optics in as		
	Sky charts and their importance.		
UNIT IV	Classification of detectors, characteristics	of detectors. Detecto	rs 15
	for optical and infrared wavelength region		
	Coupled Device (CCD). sensitivity, noise	-	
	spectral response, Johnson noise, sign		
	Application of CCD for stellar imag		<i>*</i>
	spectroscopy. Importance of space	based astronomy	
	Observational techniques of astronomical	•	
	observational techniques of astronomical	sources nom space I	11

	MASTER IN PHYSICS		
Programme:	MASTER IN PHYSICS YEAR V		MESTER IX
	Subject Diverge	PA	APER III c
Course code	Subject: Physics Course Title: High Energy Physics- I		
Course code	Course Outcomes:		
Students we	ould be able understand the complex properties and behaviour	of	high energy
particles at	the microscopic level. This course would encourage students to	o po	eruse higher
study and re	search in particle and high energy Physics.		
Credits: 4		Co	
Max. Mark	s: 100		mpulsory in. Passing
External Ex	xam: 75		arks: 36
	sessment: 25		
101a1 INO. Of	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	ТОРІС		No. of
			Lectures
UNIT I	Quantization of Scalar Fields Lagrangian Formulation		15
	Hamiltonian and momentum densities, Neutral and Charged scal	lar	
	fields and their quantization, Momentum representation as	nd	
	frequency splitting, Identification of various particle operator	rs,	
	Charge operator, Algebra of field operators, Invariant de	lta	
	function and its representations, Covariant commutation relation	ıs	
	and their properties.		
UNIT II	Quantization of Spinor Field Lagrangian formulation for Spin	or	15
	field, Hamiltonian and momentum densities, Quantization	of	
	Spinor Field, Momentum representation and frequency splitting	ng,	
	Identification of various particle operators, Charge operator f	for	
	Spinor field, Algebra of Spinor field operators, Covariant form of	of	
	anti-commutation relations.		
UNIT III	Quantization of Electromagnetic Field Classical electromagnet	tic	15
	field theory and its gauge formulation, Covariant Lagrangi	an	
	formulation for EM field, Quantization of EM field, Momentum	m	
	representation and frequency splitting,		
UNIT IV	Identification of various particle operators, Concept	of	15
	longitudinal, temporal and transverse photons, Covaria	nt	
	commutation relations for EM potential operators, Problems with	ith	
	temporal photons and Lorentz condition, Resolution through		
	Gupta- Bleular formulation		
	Suggested Readings:		
	L. Ryder: Quantum Field Theory		
	B. K. Agarwal: Quantum Mechanics and Field Theory		

F Mandel and Shaw: Quantum Field Theory	
P. Roman: Quantum Field Theory	
A. Das: Quantum Field theory	
M. E. Peskin, D.V. Schroeder: An Introduction to Quantum FieldTheory	
B.S.Rajput : Advanced Quantum mechanics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

Programme:	MASTER IN PHYSICS MASTER IN PHYSICS	YEAR V	SEMESTER
-			IX PAPER III
	Subject: Physics		d
Course code	· · ·	pectroscopy-I	
	Course Outcomes:	processopy -	
applications	rse the students would study the various types of l in science and technology. Knowledge acquired by		
	stries and R&D sector.		
Credits: 4			Core Compulsory
Max. Mar External I Internal a			Min. Passing Marks: 36
Total No. of	f Lectures-Tutorials-Practical (in hours per week): 4-0-0)	1
UNIT	ТОРІС		No. of
			Lectures
UNIT I	Rotational Spectra: rotational energy level po	pulations, linear,	15
	symmetric, spherical and asymmetric top mol	ecules, rotational	
	selection rules for linear molecules, Stark eff	ect in molecular	
	rotation spectra, Molecular rotation-nuclear	spin coupling,	
	Positive and negative character of the wave fu	inctions of linear	
	molecules, Symmetric-antisymmetric character	r and statistical	
	weight of homo-nuclear linear		
	molecule.		
UNIT II	Vibrational Spectra: Vibration spectra of poly	atomic molecule,	15
	coupling of rotation and vibration, perpendic	-	
	bands, Normal modes of vibration and th	eir analysis in	
	Cartesian coordinates, normal coordinates and	nd their internal	
	coordinates, calculation of vibrational freque		
	field of H ₂ O and CO ₂ molecules, anharmon		
	and non-degenerate vibrations, inversion doubli	ng, Quantized	
	Vibrational motion of polyatomic molecules.		. –
UNIT III	Electronic Spectra: Spectroscopy of Diatomic	•	15
	Molecules: Coupling of Electronic and Rota		
	Diatomic Molecules and Rotational structure of		
	- 1Σ transitions. Vibronic interaction and	-	
	theory for absorption spectrum of benzene vapo		15
UNIT IV	Single vibronic level spectroscopy and lifeti		15
	levels in benzene, Quantum yield, Kasha Rule	-	
	of nonradiative transitions in molecules, Jablar	-	
	qualitative treatment of small molecule and larg	ge molecule limit	
	for nonradiative transitions.		

Suggested Readings:	
C.N. Banwell: Fundamentals of Molecular Spectroscopy	
Walker and Stranghen: Spectroscopy Vol. I, II, & III	
Herzberg: Spectra of diatomic molecules Jeanne	
L. Mchale: Molecular Spectroscopy	
P.F. Bemath: Spectra of atoms and molecules	
J.M Holias: Modern Spectroscopy	
K. Thyagrajan and A.K. Ghatak: Lasers: Theory and applications A Yariv: Quantum Electronics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme:M		EMESTER IX APER IIIe
	Subject:Physics	
Course code	CourseTitle:-Condensed Matter	Physics-I
condensed a different type	Course Outcomes: e develops the basic understanding regarding the principles matter physics. The course expose student to the domain of the pes of magnetism. This course will also widen the knowledge be present course also enables the concept of dielectrics among the st	crystal defect and hind energy band
Credits:4		oreCompulsory
Max.Marks: ExternalExa Internalasse	100 N m:75 P	fin. PassingMar s:36
UNIT	ТОРІС	No. of
UNIT I		Lectures 16
	Electronic Properties of Solids: Electrons in periodic potential, Kronig-Penny model for batheory, brillouin zone, Effective mass, Physical interpretation effective mass, Distinction between metals, Semiconductors a insulators, Density of state function, Density of electrons conduction band, Density of holes in valence bands, Donor a acceptor impurities in n-type and p-type semiconductors, MetaSemiconductor junctions.	of Ind In Ind
UNIT II	Dielectric and electrical properties of insulators: Macroscopic description of dielectric constants, static, electro and ionic polarizability of molecules, orientational polarizati Internal Lorentz field static dielectric constant, Complex dielect constant, Dielectric loss and relaxation time, Optical absorption.	on, tric
UNIT III	Magnetism: Dia, Para and ferromagnetism, Langvin's theory paramagnetism, Ferromagnetism, Quantum theory of dia and p magnetism, Weiss molecular theory, Ferromagnetic domai Anti-ferromagnetism, Neel's theory, Two sub-lattice mod ferrites.	ns,
UNIT IV	Defects in crystals: Point defect, Impurities, Vacancies, Frenkel defects, Schot defects, Intrinsic vacancies, Concentration of Schottky defec Concentration of frankel defects, extrinsicvacancies, Diffusi Colour centres, F-Centre, V-Centre, dislocation, Line defects, ec dislocation, screw dislocation, Burger vector.	ets, on,
 Ziman J.M, Callaway J. Dekker A. J 	SuggestedReadings: htroduction to Solid State Physics, Willey Publication, 2008. Principles of theory of solids, Cambridge University Press, 2013. , Quantum theory of solids, Elsevier, 1976. J., Solid State Physics, Prentice Hall, 1962. .O. E, Intermediate Quantum theory of crystalline solids, Prenti	ce-

shcroft N. W. and Mermin N. D., Solid State Physics, Holt, Rinehart and Vinston, 1976. axena A. K.,Solid State Physics, Laxmi Publication, 2017.	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
. MITOpenLearning-	
MassachusettsInstituteofTechnology,https://openlearning.mit.e lu/	
5. NationalProgrammeonTechnologyEnhancedLearning(NPTEL), https	
//www.youtube.com/user/nptelhrd	
5. SwayamPrabha -DTH	
Channel,https://www.swayamprabha.gov.in/index.php/program/curr ent_he/8	

	MASTER IN PHYSICS	
Programme: MAS		MESTER IX PER IV a
	Subject: Physics	
Course code	Course Title: Advanced Electronics- II	
771.'	Course Outcomes:	
	os the students to gain basic ideas of the digital communica	
	memory and optoelectronic devices. The course is of much prac	tical purpose
for the students to	b learn advanced concepts of digital communication systems.	
Credits: 4		Core
Max. Marks: 10	a	Compulsory Min.
External Exam:		Passing
Internal assessn		Marks: 36
Total No. of Lectu	res-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of
		Lectures
UNIT I	Modulation Techniques:	15
	Angle modulation (PM & FM), relation between PM & FM, FM	
	generation (direct, varactor diode & reactance tube methods),	
	frequency demodulators (slop & balanced slope method), pulse	
	modulation (PAM & PWM) and demodulation, discretization in time and amplitude concent of quantization mules code	
	time and amplitude, concept of quantization, pulse code modulation (PCM), basic idea of digital telemetry and digital	
	signal processing.	
UNIT II	Microwave production and Microwave Communications:	15
	Microwave frequencies, advantages of microwaves, limitation	
	of conventional electronic devices at UHF, microwave	
	measurements devices and instrumentation, measurement of	
	power, principle of velocity modulation, two cavity klystron,	
	reflex klystron, transferred electron devices (TEDs), Gunn-	
	effect diodes (GaAs diode only): RWH theory, mode of operation. Satellite communication.	
	operation. Saterine communication.	
UNIT III	Fiber Optics:	15
	Evolution of fiber optics, advantages and classification of	
	fibers, acceptance angle, numerical aperture, propagation of	
	light waves in step index and graded index fibers, optical fiber	
	modes and configurations, attenuation in optical fibers, light	
	sources, detectors and their characteristics, optical	
	communication system, optical fiber sensors: intensity	
	modulated and interferometric optical fiber sensors.	
UNIT IV	Power Supply Regulation: Load regulation, line regulation and	15
	output resistance of a power supply, shunt & series regulators	
	and their short circuit protection, monolithic linear regulators:	
	classification, LM78XX & LM79XX series, regulated dual	
	supplies and adjustable regulators, current boosters and their short circuit protection unregulated DC to DC converters	
	short circuit protection, unregulated DC to DC converters, switching regulators: buck, boost and buck-boost regulators,	
	Precision rectifier.	
L		I

Suggested Readings: 1. 'Electronic Principles'- A.P. Malvino, TMH Publishing Company Limited. 2. 'Microwave Devices and Circuits'- S.Y Liao, PHI Private Limited. 3. 'Microwave and Radar Engineering' - M. Kulkarni, Umesh Publications. 4. 'Communication Systems - Analog & Digital', R.P. Singh and S.D. Sapre, TMH 5. 'Fundamentals of Fiber Optics in Telecommunication and Sensor, Ed B. Pal, New Age International (P) Limited. 6. 'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson Education 7. 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods:			
 'Electronic Principles'- A.P. Malvino, TMH Publishing Company Limited. 'Microwave Devices and Circuits'- S.Y Liao, PHI Private Limited. 'Microwave and Radar Engineering' - M. Kulkarni, Umesh Publications. 'Communication Systems - Analog & Digital', R.P. Singh and S.D. Sapre, TMH 'Fundamentals of Fiber Optics in Telecommunication and Sensor, Ed B. Pal, New Age International (P) Limited. 'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson Education 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ National Programme on Technology Enhanced Learning (NPTEL), 			
 'Electronic Principles'- A.P. Malvino, TMH Publishing Company Limited. 'Microwave Devices and Circuits'- S.Y Liao, PHI Private Limited. 'Microwave and Radar Engineering' - M. Kulkarni, Umesh Publications. 'Communication Systems - Analog & Digital', R.P. Singh and S.D. Sapre, TMH 'Fundamentals of Fiber Optics in Telecommunication and Sensor, Ed B. Pal, New Age International (P) Limited. 'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson Education 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ National Programme on Technology Enhanced Learning (NPTEL), 			
 'Electronic Principles'- A.P. Malvino, TMH Publishing Company Limited. 'Microwave Devices and Circuits'- S.Y Liao, PHI Private Limited. 'Microwave and Radar Engineering' - M. Kulkarni, Umesh Publications. 'Communication Systems - Analog & Digital', R.P. Singh and S.D. Sapre, TMH 'Fundamentals of Fiber Optics in Telecommunication and Sensor, Ed B. Pal, New Age International (P) Limited. 'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson Education 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ National Programme on Technology Enhanced Learning (NPTEL), 	Suggest	ed Readings:	
 'Microwave Devices and Circuits' - S.Y Liao, PHI Private Limited. 'Microwave and Radar Engineering' - M. Kulkarni, Umesh Publications. 'Communication Systems - Analog & Digital', R.P. Singh and S.D. Sapre, TMH 'Fundamentals of Fiber Optics in Telecommunication and Sensor, Ed B. Pal, New Age International (P) Limited. 'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson Education 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ National Programme on Technology Enhanced Learning (NPTEL), 		· · · · · · · · · · · · · · · · · · ·	
 3. 'Microwave and Radar Engineering' - M. Kulkarni, Umesh Publications. 4. 'Communication Systems - Analog & Digital', R.P. Singh and S.D. Sapre, TMH 5. 'Fundamentals of Fiber Optics in Telecommunication and Sensor, Ed B. Pal, New Age International (P) Limited. 6. 'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson Education 7. 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), 	2.		
 4. 'Communication Systems - Analog & Digital', R.P. Singh and S.D. Sapre, TMH 5. 'Fundamentals of Fiber Optics in Telecommunication and Sensor, Ed B. Pal, New Age International (P) Limited. 6. 'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson Education 7. 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	3.		
 5. 'Fundamentals of Fiber Optics in Telecommunication and Sensor, Ed B. Pal, New Age International (P) Limited. 6. 'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson Education 7. 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	4.		
New Age International (P) Limited. 6. 'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson Education 7. 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	5.		
Education 7. 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),		New Age International (P) Limited.	
7. 'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited. Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	6.	'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson	
Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),		Education	
Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	7.	'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited.	
Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),			
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	Can be	opted by	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	Dashala	n in Chienne with Dhaving as mains while t	
Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),			
Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	Suggest	ed Continuous Evaluation Methods:	
Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),			
Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	Course	Prerequisites	
Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),			
 MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ National Programme on Technology Enhanced Learning (NPTEL), 			
https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	Suggest	ed Equivalent Online Courses:	
https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	1. MI	Γ Open Learning - Massachusetts Institute of Technology,	
2. National Programme on Technology Enhanced Learning (NPTEL),			
	-		
		/www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	•		
https://www.swayamprabha.gov.in/index.php/program/current_he/8		•	

MASTER IN PHYSICS			
Programme: MAS	FER IN PHYSICS	YEAR V	SEMESTER IX PAPER IV b
	Subject: Physics		THE LET V U
Course code	Course Title: Astr	ophysics –II	
	Course Outcomes:		
	provide the deeper understanding of the radiat		
	matter. It would be important to understa	÷ •	
-	is crucial for the deeper knowledge of the r		white dwarfs and
black holes. Their	r study provides the insight for the gravitationa	al waves.	
Credits: 4			Core Compulsory
Max. Marks: 10	0		Min. Passing
External Exam: Internal assessm			Marks: 36
	res-Tutorials-Practical (in hours per week): 4-0-0		
			N. A.
UNIT I	TOPIC	- inte :/	No. of Lectures
UNIT I	Radiation transfer: Definitions of specifi	-	15
	mean intensity, flux and energy density;	-	
	radiation transfer; solutions in some spe		
	optical depth; Thermal emission; Blackboo	• •	
	and its characteristics; Kirchoff's law; Ein	stein	
	coefficients.		
UNIT II	Interior Properties of Stars Hydrostatic	-	15
	Virial theorem, Polytrophic indices, Land		
	equation LTE, Radiative equilibrium		
	condition of convective and radiative of	-	
	Continuous spectra of stars, Stellar op	-	
	darkening, line blanketing, theory of Fraun	hofer lines,	
	curve of growth and line broadening.		
UNIT III	Elementary theory of white dwarfs, Chand		15
	limit for white dwarf stars, neutron stars the		
	properties, Pulsars, black holes, low medium		
	and high mass stars, death of high mass stars	8,	
	supernova remnants	0 ~	
UNIT IV	AGNs and Quasi-stellar Objects Theory		15
	Syferts, quasars and their energy gene		
	redshift anomaly. Different AGN models,	radio lobes	
	and jets, Gamma ray bursts.		
Λ1	Suggested Readings: bhyankar K.D.: Astrophysics, Galaxies and Stars		
	myankar K.D., Asuophysics, Odianics and Stars		
Va	aidyanth Basu: An Introduction to Astrophysics		
	otz: Astrophysics A. R. Choudhuri : Astrophysics	for	
ΓI.	195101565		

B. D. Abhyankar: An Introduction to Astrophysics	
T. Padmanabhan : Astrophysical Processes	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: MAS	STER IN PHYSICS YEAR V	SEMESTER IX PAPER IV c
	Subject: Physics	
Course code	Course Title: High Energy Physics-II	
properties.The stuled to the detection	Course Outcomes: Id provide the knowledge of basic building blocks of matter dents will also be able to know the complicated theory of Higgs on of God particle in LHC experiment in the year 2012. It would on t to work in the field of HEP.	mechanism which
Credits: 4		Core
Max. Marks: 10 External Exam Internal assessr	: 75 nent: 25	Compulsory Min. Passing Marks: 36
Total No. of Lectu	ures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of Lectures
UNIT I	Lie Groups and Lie Algebra Symmetries, Groups and conservation laws, Lie groups and their generator, representation of the groups, Lie Algebra, Different dimensions and parameter groups-their generators and algebra, Simple and semi-simple Lie Algebra, Standard form of Lie Algebras, Root diagrams for groups of different rank.	15
UNIT II	Quark Model Fermi Yang model, Sakata model, Necessity of Quark model, Shortcomings of Eight fold way, Gell - Mann Zweig model, Quark-Lepton symmetry and structure of Hadrons, Need of charm quantum number and charmed quark , Elementary idea of charm, bottom and top quarks, Baryon magnetic moments in quark model, Experimental status of Quarks.	15
UNIT III	Gauge Field Theories Concept of gauge fields and gauge connections, Principle of gauge invariance, Global and local Abelian gauge invariance, U(1) gauge invariance of QED.	15
UNIT IV	Yang- Mills gauge field, Non-Abelian gauge field theory (SU(2) case), Concept of spontaneous symmetry breaking and Goldstone Bosons, Higgs Mechanism with physical examples and mass generation for gauge fields Suggested Readings:	15
D	E. Close: Quarks and Patrons O.C. Cheng and O Neil: Elementary Particle Physics	
	Cheng and G. LF Li: Gauge Field Theory J. Aitchison and A. J. Hey: Gauge theories in Particle Physics	
	I. Georgi : Lie Algebras in particle Physics	

D. B. Lichtenberg : Unitary Symmetry and Elementary Particles, Academic Press, 1978	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS		
Programme: MAST	ER IN PHYSICS	YEAR V	SEMESTER IX PAPER IV d
	Subject: Physics		
Course code	Course Title: Spe	ectroscopy -II	
In this course the stu	Course Outcomes: dents would study the various types of lasers, La	aser spectroscopy a	nd their
	ce and technology. Knowledge acquired by the		
various industries an			
Credits: 4			Core Compulsory
Max. Marks: 100			Min. Passing
External Exam: 7 Internal assessme			Marks: 36
	es-Tutorials-Practical (in hours per week): 4-0-0	1	
UNIT	TOPIC	11 .1 1.1	No. of Lectures
UNIT I	Radiation and Matter Interaction of		15
	matter, Einstein quantum theory of radia		
	coefficients, Momentum Transfer, Lifeti	-	
	optical frequencies, Coherence Spatial an Monochromaticity, kinetics of optical abs	-	
	width, line broadening mechanisms.	orption, me	
UNIT II	Basic Elements of Lasers Spontane	eous emission	15
	Stimulated emission, Possibility of amp		10
	pumping, Population Inversion, Three		
	scheme, Threshold condition, rate equati		
	resonators & laser modes, gain saturation.		
UNIT III	Type of Lasers Different types of lasers,		15
	Ne laser, N_2 & CO ₂ lasers dye lasers, sol	-	
	Nd-YAG, semiconductor lasers. Tunability		
UNIT IV	Applications of Lasers		15
	Basic application of laser spectroscopy, la	aser cooling	
	and trapping of atoms etc.		
Ban	Suggested Readings: well: Fundamentals of Molecular Spectroscopy	Walker	
	Stranghen: Spectroscopy Vol. I, II, & IIIHerzbe		
	ctra of diatomic molecules	-	
	nne L Mchale: Molecular Spectroscopy		
	Bemath: Spectra of atoms and molecules		
	Holias: Modern Spectroscopy		
	Thyagrajan and A.K. Ghatak: Lasers: Theory an	nd applications	
Π.	ingugrujun and r.ix. Onatak. Easers. Theory an	a apprications	

A Yariv: Quantum Electronics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS			
Programme:MA		SEMESTER IX PAPER IVe	
	Subject:Physics		
Course code	CourseTitle: Condensed Matter Physi	cs -II	
properties exhib domain knowle superconductors	CourseOutcomes: labus provides knowledge about the basic concepts, principles ited by condensed matter, especially solids to the students.The edge of ferroelectrics.The course also develops the basic and their properties.This course also deals with the topics like tr sonance, and imparts knowledge to the students.	course widens th s knowledge c	
Credits:4	somered and imparts into weage to the statement	Core	
Max.Marks: 1 ExternalExan Internalassess	n:75 sment:25	Compulsory Min.Passi ngMarks: 36	
TotalNo.ofLectu	res-Tutorials-Practical(inhoursperweek):4-0-0		
UNIT	ТОРІС	No. ofLectures	
UNIT I	Nearly free electron model: One dimensional free electron case, Nearly free electron case, energy bands in or dimension, tight binding approximation, energy surfac Wigner Seitz cellular method, Orthogonalized plane wa (OPW) method, Pseudo potential method, Limitations band theory (Mott Transition)	ne es, ve	
UNIT II	Ferroelectrics Materials: Structural phase transition ferroelectric crystals, classification of ferroelectric crystal displacive transition, soft optical phonons, landau theory of pha- transition, Second and first order transition, optical absorption transmission and reflection. antiferroelectricity, ferroelect domains.	als, ase on,	
UNIT III	Superconductivity: Experimental Survey, Occurrence of sup conductivity, destruction of superconductivity by magnetic fit and temperature, Meissner effects, Type-I and Type superconductors, Isotope effect, Thermodynamics Superconducting transition, London Equations, Coheren length, BCS Theory, Cooper pairs, Josephson superconduc tunneling, AC & DC Josephson effect, High temperatu superconductors, critical fields and critical currents.	eld of nce tor ure	
UNIT IV	Transport properties and magnetic resonance: Sommerfor theory of electrical conductivity, Boltzmann transport equation Relaxation time, Experimental determination of Hall coefficient Residual resistivity, Temperature dependent resistivity, Princip of magnetic resonance, Nuclear magnetic resonance, Electric spin resonannce, Resonance, Flourescence, Theory of Mössbarr effect, Isomer shift, Quadrupole interaction, magnetic hyperfinite interaction.	on, ent, ple ron uer	

	SuggestedReadings:	
1	Lubensky T.C. and, Chaikimand P.M., Principle of condensed matter	
1.	Physics, Cambridge University Press, 2012.	
2	Ryogo K., Solid State Physics, McGraw-Hill, 1969.	
	Srivastava, J. P. Elements of Solid State Physics, Prentice Hall of	
5.	India, 2006.	
4.	Otfried M., Introduction to Solid State Physics, Spinger, 1978.	
5.	Patterson J., and Bernard C., Introduction to Solid State Physics, Springer, 2007.	
6.	Kittel C., Introduction to solid state Physics, Wiley, 2008.	
7.	Ashcroft N. and Mermin N., Solid State Physics, Cambridge University	
	Press, 1976.	
8.	Saxena A. K., Solid State Physics, Laxmi Publication, 2017.	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VIII with Physics as major	
	Suggested Equivalent Online Courses:	
7. Mľ	TOpenLearning-	
Massa	achusettsInstituteofTechnology,https://openlearning.mit.ed	
u/		
8. Nat	tionalProgrammeonTechnologyEnhancedLearning(NPTEL),https:	
//www	w.youtube.com/user/nptelhrd	
9. Sw	ayamPrabha -DTH	
	nel,https://www.swayamprabha.gov.in/index.php/program/curre	
nt_he		

	MASTER IN PHYSICS		
Programme	: MASTER IN PHYSICS	YEAR IV	SEMESTER IX/PAPER V
	Subject: Physics		
Course cod		TICAL	
The stude	Course Outcomes:		:ffenert fielde of
	nt will have adequate knowledge to perform the experience of the theory holis of the t		interent neids of
	ith clear understanding of the theory behind the expe		
Physics	ill know about various electronics experiments and s		ed experiments in
Credits: 4			Core
creation 1			Compulsory
Max. Ma External			Min. Passing
	assessment: 25		Marks: 36
	of Lectures-Tutorials-Practical (in hours per week): 0-0-4	ļ	
UNIT	List of Experiments		No. of Lectures
	1. Verification of Richardson's law.		
	2. Study of ESR spectra of a given sampl	e.	
	3. Hall Effect		
	4. RCS Spectrometer		
	5. Gamma ray spectrometer		
	6. Radio Receiver		
	7. e by Millikan's oil drop method.		
	8. Temperature dependence of diode char	acteristics.	60
	9. Elastic constants of a cubic crystal by waves.	y ultrasonic	
	10. Study of Multivibrators.		
		cum feedb	ack
	12. Study of absorption of	KMnO ₄	by
	Spectrophotometer		
	13. Study of different FETs and MOSFE	Гs.	
	14. Study of Thermo luminance.		
	15. Study of VTVM.		
	Can be opted by		
	Bachelor in Science with Physics as major subje	ct	
	Suggested Continuous Evaluation Methods:		
	Course Prerequisites Bachelor in Science with Physics as major subje	ct	
1. Vii	Suggested Equivalent Online Courses:tualLabsatAmritaVishwa	Vidyapeetha	am,

https://vlab.amrita.edu/?sub=1&brch=74	
2. Digital Platforms /Web Links of other virtual labs may be suggested /	
added to this lists by individual Universities	

	MASTER IN PHYSICS		
Programme: MAS	FER IN PHYSICS	YEAR V	SEMESTER X PAPER I
	Subject: Physics		
Course code	Course Title: Nu	clear Physics	
To this second star	Course Outcomes:	(-1
	idents would know about the general proper		
	ctive decay and nuclear reactions. The cou		
•	out research in the field of nuclear physic	cs, high energy	physics, nuclear
astrophysics, nucl	lear reactions and applied nuclear physics.		
Credits: 4			Core
Credits: 4			Compulsory
Max. Marks: 10			Min. Passing
External Exam:			Marks: 36
Internal assessm	res-Tutorials-Practical (in hours per week): 4-0-0		
Total 100. Of Decta	liss Futorius Fructicui (in nours per week). Fo o		
UNIT	ТОРІС		No. of
			Lectures
UNIT I	Nuclear Properties and Nuclear Model		15
	Atomic Nuclear-Size, Shape, charge distri	ribution, spin &	
	parity, magnetic moment; electric quad	rupole moment;	
	binding energy; semi-empirical mass f	formula, mirror	
	nuclei, Liquid drop model, Experimenta	al evidence for	
	shell effects, Shell model, Magic numb	pers, Spin orbit	
	coupling, Single particle shell model-its	validity and	
	limitations; collective model.		
UNIT II	Nuclear Forces and Nuclear Interaction	ons Theory of	15
	Deuteron and nuclear level properties, nu	cleon - nucleon	
	interactions, low & highenergy	nucleon-nucleon	
	scattering, Yukawa's Meson theory of	nuclear forces,	
	Spin dependence and charge independence		
	forces.		
UNIT III	Nuclear Reactions Kinds of nucl	ear reactions;	15
	Conservation laws; Nuclear reaction Kir		
	particle reaction spectroscopy; neutron	e e	
		cleus; Nuclear	
	transmutations, continuum theory of n	·	
	Nuclear fission, Chain reactions, Nuclear f		
	Thermonuclear reactions.	- 7	
UNIT IV	Nuclear Decays Basic understanding of	and - decay	15
	Fermi theory of beta decay, selection	•	
	Neutrino hypothesis, Parity violation in ber	-	
	capture and internal conversion.	uccuy, 1x	
	eupture una internar conversion.		

Suggested Readings:	
E. Burcham: Nuclear Physics	
Ervin Kapalan: Nuclear Physics	
Roy & Nigam: Nuclear Physics	
S. N. Ghoshal: Atomic and Nuclear Physics	
5. IV. Onoshai. Atomic and IVacical Thysics	
A. Enge: Nuclear Physics	
.D. Evans: Nuclear Physics	
E. Segre: Nuclei and Particles	
H.M. Agrawal: Nuclear Physics, PHI Learning	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Suggisted Continuous Evaluation Methods.	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: MAS	TER IN PHYSICS YEAR V	SEMESTER X PAPER II
	Subject: Physics	
Course code	Course Title: Digital Electronics and Computer	Architecture
The course end	Course Outcomes: ables student to get knowledge about Digital Electronic	es and Computer
	e course includes Fundamentals of Digital Circuit, Comp	-
	e, Instruction formats & Microprocessor, Data Communi	-
	tions. The course helps student to work for the development	-
		ent of technology
and also the for t	he industry and various Government organizations.	
Credits: 4		Core Compulsory
Max. Marks: 10 External Exam	90 • 75	Min. Passing
Internal assess		Marks: 36
	ures-Tutorials-Practical (in hours per week): 4-0-0	
	-	
UNIT	ТОРІС	No. of Lectures
UNIT I	Digital Circuit & Microprocessor Elementary idea of	15
	combinational and sequential circuits, Overview of	
	Microcomputer organization and operation,	
	Microprocessor evolution and types, Fundamental	
	knowledge of Microprocessor (8085/8086), Architecture	
	and its operation, Basic idea of logic devices for	
	interfacing 8085/8086.	
UNIT II	Computer Organization and Architecture Central	15
	Processing Unit, Computer organization, Instruction	
	formats (e.g. Three address, Two address etc), addressing	
	modes, Timing diagram, Interconnection of different	
	units, I/0 to processor and processor to memory	
	communication, Interrupt structures, Multiprogramming,	
	processor features RISC, CISC, cache memory, real and	
	virtual memory.	
UNIT III	Data Communication Computer and Communications,	15
	Need for communication networks, Internet and World	
	Wide Web, communication protocols, Local Area	
	Networks, Interconnecting networks, Future of Network	
	Technology.	
UNIT IV	Computer Network Characteristics of communication	15
	channels, Allocation of Channels, Physical	
	Communication media, Public Switched Telephone	
	Network, Cellular Communication Path, ATM networks	
	Suggested Readings:	
	Iorris Mano : Computer system Architecture, (PHI) (Eastern	
E	conomy Edition)	

	V. Rajaraman: Fundamentals of computers, (Prentice Hall ofIndia)
	Morries Mano: Computer system architecture, (Estern Economy Edition)
	B. Ram: Computer fundamental-architecture and organization (New Age International Publishers)
	Tenan Bomm: Computer Network
	Ramesh Gaonkar: Microprocessor, Architecture, programming and application with the 8085
	Hafizer Rehaman: Microprocessor programming and Interfacing Intel 8085 and 8086
	Can be opted by
I	Bachelor in Science with Physics as major subject
	Suggested Continuous Evaluation Methods:
	Course Prerequisites
	Passed Semester IX with Physics as major
	Suggested Equivalent Online Courses:
1. MIT Open I	Learning - Massachusetts Institute of Technology,
https://openlear	rning.mit.edu/
2. National Pro	ogramme on Technology Enhanced Learning (NPTEL),
https://www.yo	outube.com/user/nptelhrd
3. SwayamPrat	bha - DTH Channel,
https://www.sw	/ayamprabha.gov.in/index.php/program/current_he/8

		MASTER IN PHYSICS		
Programme: M	ASTER I	N PHYSICS	YEAR V	SEMESTER X
		Subject: Physics		PAPER III A
Course code		Course Title: Advanc	ed Electronics-III	
Course code		Course Outcomes:		
This course	helps the	students to gain advanced concep	ts of power supp	ly regulation
microwave p	roduction	and microwave generation which h	as wide application	ons in modern
industry and F			•••	
Credits: 4				Core Compulsory
Max. Marks:				Min.
External Exa Internal asse		5		Passing Marks: 36
		orials-Practical (in hours per week): 4-0-0)	Marks: 50
		onais Practical (in nouis per week). + 0 (,	
UNIT		TOPIC		No. of
				Lectures
UNIT I	0	rated Circuit Technology: Classificat	, j	15
		n and wafer preparation, monolith		
		ion, photo and fine line lithography, w	2	
		on and ion implantation, epitar		
		ization, fabrication of IC comp	onents: resistors,	
UNIT II		tors, diodes and bipolar transistor.	1.0. 1.4	15
	config CMRF	Ational Amplifier (OA): Differential urations, DC and AC analysis of dif R, operational amplifier, circuit type of set, virtual ground, virtual short, in	ferential amplifier, of OA 741, effects	
		ng amplifier.	iverting and non-	
UNIT III		r Analog systems: Summing and di e follower, OA as log and antilog am		15
		e to current converter, current to		
	Ų	ator and differentiator.	voluge converter,	
UNIT IV	Non-L	inear Analog Systems: Comparator	sample and hold	15
		, IC 555 timer, waveform generate		
		ier, precision rectifier, active filters		
	-	Locked Loop.	(J),	
		Suggested Readings:		
		plifiers and Linear Integrated Circui , PHI Private Limited.	ts'- R.F. Coughlin	
	nps and L	inear Integrated Circuits'- R.A. Gaya	kwad, PHI Private	
3. 'Integra	ated Circu	its' - K.R. Botkar, Khanna Publishers. f Semiconductor Fabrication' - G.S. M		
	/iley & So		-	

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS			
Programme: MAS	TER IN PHYSICS YEARVYEAR	SEMESTER X	
	Subject: Physics	PAPER III B	
Course code	ics-III		
	Course Outcomes:		
This course provi	des the basic physical mechanisms about the solar activitie	es, which will help	
to probe the Sun	- Earth connection. This study provides the knowledge of	f Astroseismology,	
classification of s	tars and the distribution in Galaxies.		
Credits: 4		Core Compulsory	
Max. Marks: 10 External Exam: Internal assessm	75	Min. Passing Marks: 36	
	res-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	TOPIC	No. of Lectures	
UNIT I	Sun as a star : Solar spectrum, effective temperature,	15	
	luminosity, photospheric absorption lines, limb		
	darkening; energy source: Kelvin time scale, nuclear		
	fusion; energy transport in the sun, Thomson		
	scattering, mean free path, photon diffusion inside the		
	Sun; photosphere, chromosphere, transition region,		
	corona.		
UNIT II	Quiet and Active Sun, Sunspots, their formation and	15	
	magnetic field, Solar flares, Solar		
	filaments/prominences, Coronal mass ejections		
	(CMEs), Solar wind, Different type of solar eruptions		
	models, Coronal heating, Origin of solar cycle.		
UNIT III	General idea of Heliosesmology, Astroseismology,	15	
	Description about p-mode and g-mode oscillations,		
	Introduction to variable stars and their locations in H-R		
	diagram. Classifications, Cephieds variables (classic		
	Cephieds and W Virginis stars), RR Lyrae stars, Mira		
	variables, Eruptive variables, Flare stars, Nebular		
	variables, Supernovae, roAP stars		
UNIT IV	The Milky way and Other Galaxies Distributions of	15	
	stars in the Milky way, Morphology, Kinematics,		
	Interstellar medium, Galactic center. External galaxies,		
	Types of galaxies: spirals, ellipticals and irregulars,		
	Hubble classification for galaxies, 21cm line, rotation		
	cure, dark matter.		
~	Suggested Readings:		
St	ix: The Sun: An Introduction		
K.	D. Abhyankar : Astrophysics: Stars and Galaxies		

T. Padmanabhan : Galaxies and Cosmology Motz : Astrophysics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS		
Programme: MAS	TER IN PHYSICS YEAR V		ESTER X R III C
	Subject: Physics		
Course code	Course Title: Hight Energy	Physics-III	
	Course Outcomes:		
	ld provide the knowledge of advanced concepts of HEP. T		
	e complicated theory of Relativistic propagators, S matri	-	
matrix formulati field of HEP.	on of QED. It would open doors for the students who w	ant to wo	rk in the
Credits: 4		Core Cor	npulsory
Max. Marks: 10 External Exam Internal assessr	: 75	Min. Pa Marks:	ssing
	ures-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	TOPIC	No. of Lectu	
UNIT I	quantized scalar fields(Real and complex cases), Algeb of field operators, covariant form of the field operator algebras, (Covariant commutation relations), Mes propagator and its characteristics, Properties of quantiz spinor fields, Algebras of spinor field operator, Covaria form of anti-commutation relations, Fermion propagat and its characteristics, properties of quantized EM fie Covariant commutation relations of EM field operator Photon propagator and its characteristics, EM interaction terms of radiation field and instantaneous coulomb fields.	of ora ors on zed ant tor ld, ors, in	15
UNIT II	Operator Products, Feynman Propagators and S-math Expansion Various type of operator products (Norm Dyson products and Chronological T-products), Wich theorem, Feynman propagators and its physic interpretation, Interacting fields, S-Matrix formulation as perturbative series solution of collision processes, Dyson expansion of S-matrix.	al, k's cal 3 a	15
UNIT III	S-matrix Formulation of QED Interaction Hamiltonian QED, Reduction of S-matrix for the case of QE Representation and description of various first and secon order processes in QED using S-matrix expansion.	D,	15
UNIT IV	Compton scattering, Moller scattering, Bhabha scatterin Electron self energy, Photon self energy, vacuu configuration in QED, Feynman diagrams and Feynman Rules in QED.	-	15

	Suggested Readings:	
Ryd	ler: Quantum Field Theory	
B.K.	Agarwal: Quantum Mechanics and Field Theory	
F Ma	ndel and G. Shaw: Quantum Field Theory	
Roma	an: Quantum Field Theory	
A. Da	as: Quantum Field theory	
M. E. Theo:	. Peskin, D.V. Schroeder: An Introduction to Quantum Field ry	
	Can be opted by	
Bach	elor in Science with Physics as major subject	
Su	ggested Continuous Evaluation Methods:	
	Course Prerequisites	
Р	Passed Semester IX with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Open Learni	ing - Massachusetts Institute of Technology,	
https://openlearning.	.mit.edu/	
2. National Program	nme on Technology Enhanced Learning (NPTEL),	
https://www.youtube	e.com/user/nptelhrd	
3. SwayamPrabha -	DTH Channel,	
	nprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS			
Programme: MAS'	TER IN PHYSICS	YEAR V		MESTER X
	Subject: Physics		PA	PER III D
Course code	Course Title: Spec	ctroscopy-III		
	Course Outcomes:			
	e students would study the various types o		-	_ •
	in science and technology. Knowledge acc	quired by the c	ourse	e will be of
much use for vari	ous industries and R&D sector .			
Credits: 4			Cor	
Max. Marks: 10	0			npulsory n. Passing
External Exam: Internal assessm	75		Ma	arks: 33
	res-Tutorials-Practical (in hours per week): 4-0-0			
UNIT	ТОРІС			No. of Lectures
UNIT I	Molecular Symmetries and Group T	heory Symme	etry	15
	Properties of molecule: symmetry ele	• •	•	
	operation and point group, character tak	ole, Group theo	ory:	
	representation of a group, reducible			
	representations, LCAO coefficient of a po	lyatomic molecu	ıle,	
	Huckel approximation, overlap and resonan	ce integrals,		
	Wheal's approximation.			
UNIT II	Mechanism of Fluorescence Emission and	decay mechanis	sm,	15
	radiative & nonradiative processes, Jablons	ski diagram, Ka	sha	
	rule, Fluorescence lifetime and quantum	•		
	Mirror image rule, Oscillator streng	-	nce	
	polarisation and Anisotropy, Time scale of	molecular		
	processes in solution .			
UNIT III	Instrumentation for Fluorescence Spectr			15
	and Emission spectra, An ideal	spectrofluorome		
	Distribution in Excitation & Emission spec Monochromator,	cira, Light source	es,	
UNIT IV	Optical filters, Photomultiplier tubes, Photo	on counting yors	110	15
	Analog detection of Fluorescence Correcte	-	ous	10
	spectra, Measurement of Fluorescence lifeti			
	Suggested Readings:			
Ba	arrow G. M: Introduction to Molecular spectro	scopy; McgrawH	Hill	
He	erzberg G: Infrared and Raman Spectra of Pol	yatomic Molecul	es;	
Ve	on Nostrand Herzberg G: Spectra of Polyatomic	c Molecules;		
on	Nostrand J. R. Lackowicz: Principle of Fluore	escence		

Spectroscopy King G: Molecular Spectroscopy	
King G.W: Spectroscopy and Molecular Structure	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	ER IN PHYSICS YEARV Subject: Physics CourseTitle: Condensed Matter Phys CourseOutcomes: Dus provides knowledge about the basic concepts, principles ed by condensed matter, especially solids to the students.Th	SEMESTERX PAPERIIIe ics -III
The present syllab	CourseTitle: Condensed Matter Phys CourseOutcomes: ous provides knowledge about the basic concepts, principles	ics -III
The present syllab	CourseOutcomes: ous provides knowledge about the basic concepts, principles	ics -III
	ous provides knowledge about the basic concepts, principles	
the domain know	ledge of synthesis of nanomaterials. The course also dev	ne course widens
	bon nanotubes to the students.	
Credits:4		Core Compulsory
Max.Marks:100		Min.Passi
ExternalExam:75		ng Marks:36
Internalassessme		Marks:36
TotalNo.ofLectures-	-Tutorials-Practical(inhoursperweek):4-0-0	
UNIT	ΤΟΡΙΟ	No. ofLectures
UNITI	Nanoscale Systems:	15
r f s u I c	Nano science, Nano technology Length scales in physic Nanostructures: 1D, 2D and 3D nanostructures (nanodots, th films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano system Quantum confinement: Applications of Schrodinger equation Infinite potential well, potential step, potential box, quantu confinement of carriers in 3D, 2D, 1D nanostructures and i consequences	in of s, n- m
	Synthesis of Nanomaterials-I :	15
F S F F	Physical Methods: Top-down vs. Bottom-up Techniqu Nonlithographic Techniques: Plasma Arc Discharg Sputtering, Electron Beam and Thermal Evaporation, Pulse Laser Deposition, Molecular Beam Epitaxy. Lithograph Process and its Limitations: Electron beam lithography, Ic beam lithography, Photo lithography, x-ray lithography.	e, ed ic
UNITIII S	Synthesis of Nanomaterials-II: Chemical Methods: Chemical Vapor Deposition (CVD), So gels techniques, Co-precipitation, Hydrothermal, Spin and D coating techniques and Spray pyrolysis, Chemical Etchir Techniques, Electroplating, Langmuir Blodgett(L-B) metho microemulsions.	ip ng
	Carbon based Nanomaterials:	15
c f	Introduction to Carbon Clusters, CNTs and synthesis carbon nanotubes.Growth mechanism, electronic structure of	of of of
	~~~ <u>~~</u>	
Physics, Ca 2. Ryogo K., S 3. Srivastava, 2006. 4. Otfried M.,	<ul> <li>T.C. and, Chaikimand P.M., Principle of condensed matter</li> <li>ambridge University Press, 2012.</li> <li>Solid State Physics, McGraw-Hill, 1969.</li> <li>J. P, Elements of Solid State Physics, Prentice Hall of Indi</li> <li>Introduction to Solid State Physics, Spinger, 1978.</li> <li>J., and Bernard C., Introduction to Solid State Physic</li> </ul>	a,

Springer, 2007.

- 6. Kittel C., Introduction to solid state Physics, Wiley, 2008.
- 7. Ashcroft N. and Mermin N., Solid State Physics, Cambridge University Press, 1976.
- 8. Saxena A. K., Solid State Physics, Laxmi Publication, 2017.

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:           10.         MITOpenLearning-	
MassachusettsInstituteofTechnology,https://openlearning.mit.e	
11. NationalProgrammeonTechnologyEnhancedLearning(NPTEL), https://www.youtube.com/user/nptelhrd	
12. SwayamPrabha -DTH	
Channel,https://www.swayamprabha.gov.in/index.php/program/curr ent_he/8	

	MASTER IN PHYSICS		
Programme:	MASTER IN PHYSICS	YEAR V	SEMESTER X PAPER IV A
~ 1	Subject: Physics		
Course code	Course Title: Advance Course Outcomes:	ed Electronics-	IV
	helps the students to gain basic ideas of the levices and circuits. The course includes the		
	ircuits and analog computation. The course is o	•	
-	learn basics of digital electronics. The digital electronic	-	
	process control, signal processing, communicat		**
etc.	process control, signal processing, communicat	ion systems,	argitar mstruments
etc.			
Credits: 4			Core Compulsory
	xam: 75 sessment: 25		Min. Passing Marks: 36
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	0	
TINITO	TODIC		
UNIT UNIT I	TOPIC	a arrital Duff	No. of Lectures
UNIT	<b>Review of logic devices:</b> logic gates, tristat Decoder, Encoder and D-Flip-flops, RAM, R		
	microcomputer, architecture of a micro	•	
	microprocessor architecture.		
UNIT II	<b>Instructions-I:</b> 8085 instruction set, data tra	nsfer operation	ns. 15
	arithmetic operations, logic operations, branch		,
	and subroutines, restart, conditional call and r	•	
	writing assembly language programs, debuggin	ng a program.	
UNIT III	<b>Instructions-II:</b> 8085 timing processes, opcod	le fetch machi	ne 15
	cycle, read and write cycle timing, interru		
	timing, timing diagrams of different in		
	interrupts, 8085 vectored interrupts, serial L		
	SOD).		
UNIT IV	Interfacing of devices: memory mapping	g, I/O mappir	ng, 15
	memory interfacing- interfacing of $4K \times 8$ , $8K$		
	memory chips, interfacing I/O devices,		
	programming of 8255 (PPI), 8251 (USART), a peripherals.	and idea of oth	ier
	Suggested Readings:		
	1. 0000 to 8085, Introduction to microprocessors for	or engineers and	
	scientists: P.K. Gosh and P.R. Sridhar (PHI)		
	2. Microprocessor Architecture, programming, and the 8085: Ramesh Gaonkar (Penram)	applications with	n
	the 6065. Kantesh Gaolikal (Felilalii)		

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: N	AASTER IN PHYSICS YEAR V	SEMESTER X PAPER IV B
	Subject: Physics	I AI EK IV D
Course code	Course Title: Astrophysics-IV	
	Course Outcomes:	
This course v	will provide the basic properties of stars, birth and the evolution of a	stars. In
addition of th	nis, it provides the deep understanding about the star clusters and	their
	g. luminosity and mass function, mass-luminosity relations etc.	
Credits: 4		Core
		Compulsory
Max. Marks External Ex		Min. Passing
Internal ass		Marks: 36
Total No. of I	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	TOPIC	No. of
UNIT I	Desig Properties of Stong Mass redius distance huminasi	Lectures
	<b>Basic Properties of Stars:</b> Mass, radius, distance, luminosi	•
	temperature, magnitude system, Wien-displacement colo	bur
	indices, filters, H-R diagram, classification of stellar spectra,	
	luminosity classification, stellar motion, stellar populations	
UNIT II	Star Formation and Stellar Evolution: Birth of stars, protost	ar, 15
	Pre-main sequence evolution: Jeans instability, star formation	on,
	Hayashi track, Zero age main sequence (ZAMS), Post-ma	uin
	sequence evolution: Core He burning, shell burning, red gia	int
	phase, planetary nebulae, white dwarf physics, electr	on
	degeneracy pressure, energy generation in stars – gravitation	nal
	contraction, pp chain, CNO cycle and triple alpha process, stell	
	life, cycles-Premain sequence, main sequence, giants.	
UNIT III	Star Cluster and their Properties: Open clusters, globul	lar 15
	clusters and the galaxy itself are examples of 'stellar system	
	crossing time; mean potential and total potential energy in	
	constant density sphere; equation of motion of N-body stell	
	system; total momentum, angular momentum and energy	
	constants of motion, stellar population, population I and II ty	•
	objects, inter-stellar extension, reddening determination from	
	color color diagram, age and distance determination of su	
	clusters, luminosity function, mass function, mass segregation	1,
	mass-luminosity relation.	
UNIT IV	Cosmological Models: Universe at large scales – Homogene	ity 15
	and isotropy – distance ladder – Newtonian cosmology	-
	expansion and redshift - Cosmological Principle - Hubble's law	v -
	Robertson-Walker metric - Observable quantities – luminos	
	and angular diameter distances - Horizon distance- Dynamics	-
	Friedman- Robertson-Walker models: Friedmann equations.	
	recontain recorrison () and models. Theamain equations.	

Suggested Readings:	
Abhyankar K. D.: Astrophysics, Galaxies and Stars	
Vaidyanth Basu: An Introduction to Astrophysics	
Motz: Astrophysics	
T. Padmanabhan: Stars and Stellar Systems	
L Kutner: Astronomy: A Physical Perspective	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
russed semester in with rugses as major	
Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: MAS	TER IN PHYSICS YEAR V	SEMESTER Z PAPER IV C
	Subject: Physics	·
Course code	Course Title: High Energy Physi	ics-IV
The course would	Course Outcomes:	opports of LIED Th
	ld provide the knowledge of some more advanced co	-
	b be able to know the detailed theory of weak interac	tions, electromagnet
interactions and s	trong interaction.	
Credits: 4		Core
Max. Marks: 10	0	Compulsory Min. Passin
<b>External Exam:</b>	75	Marks: 36
Internal assessm		
Total No. of Lectur	res-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of
		Lectures
UNIT I	Theory of Weak Interactions Classification of	weak 15
	interaction in terms of Leptonic, Semi-leptonic and	Non-
	Leptonic weak Decays, Current-Current Interaction	
	VA theory, Intermediate Vector Boson (IVB) cor	
	Conservation of Vector Current (CVC) Hypothesis,	•
	Component Theory of Neutrino, W and Z bosons as	
	gauge bosons.	() our
UNIT II	Theory of Electromagnetic Interactions Electron Po	sitron 15
	Annihilation into Hadrons, Electron- Nucleon Scatte	5111 011
	Rutherford and Mott scattering, Electromagnetic	-
	factors of Hadrons, Structure of nucleons, Eleme	
	Idea of Unification of Fundamental Interactions with	-
	reference to standard model of electro weak unification	
UNIT III	Strong Interactions Paradoxes of Naive Quark M	
	Need of color quantum Number for Quarks, Color S and Gluons, Quantum Chromodynamics, Pion-Nucleo	
	· · ·	
	Scattering,	15
UNIT IV	Spin Classification of Hadrons and Regge Traject	
	Asymptotic freedom and Perturbative QCD, Experim	
	indication for quarks and gluons, String model of had	arons
	and confinement of Quarks.	
Е	Suggested Readings: Close: Quarks and Patrons	
	. Aitchison and A.J. Hey: Gauge theories in Particle Physics	
	Haltzin& A.D. Martin: Quarks and Leptons	
-		
	H. Perkins : Introduction of High Energy Physics, Cambridge niversity Press 2000	e
U	Inversity 1 1055 2000	

P. Cheng and G. LF Li: Gauge Field Theory	
ED Commins: Weak Interactions	
D.C. Cheng and O Neil: Elementary Particle Physics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: MAS	STER IN PHYSICS YEAR V	SEMESTER X PAPER IV D
	Subject: Physics	
Course code	Course Title: Spectroscopy-IV	
In this course t	Course Outcomes: he students would study the various types of lasers, Laser s	pectroscopy and
	is in science and technology. Knowledge acquired by the co	
**	rious industries and R&D sector.	Juise will be of
Credits: 4		Core
Max Marka	nn	Compulsory
Max. Marks: 1 External Exam	: 75	Min. Passing Marks: 36
Internal assess		
Total No. of Lect	ures-Tutorials-Practical (in hours per week): 4-0-0	1
UNIT	ТОРІС	No. of
		Lectures
UNIT I	Ultrashort Pulses and Dynamics of Laser Processes	15
	Production of giant pulse, Q-switching by different types	
	of shutters, giant	
	pulse dynamics, laser amplifiers, mode locking, mode	
	pulling, ultra shot pulses, hole burning, holography	
UNIT II	Non-Linear Optics Harmonic generation, phase	
	matching, second harmonic generation, third harmonic	
	generation, optical mixing, parametric generation of light,	
	self focusing of light.	
UNIT III	Multi Photon Processes Multi quantum photoelectric	15
	effect, two photon processes, frequency up-conversion.	
UNIT IV	Stimulated Raman effect, coherent stokes & anti-stokes	15
	Raman scattering, photo acoustic spectroscopy	-
г	<b>Suggested Readings:</b> D. Levenson: Introduction to non-linear laser spectroscopy	
L	. Levenson. Introduction to non-inical faser spectroscopy	
E	B. Laud: Laser and non-linear optics	
C	velto: Lasers Demtroder: Laser Spectroscopy	
S	Can be opted by	
В	achelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester IX with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Open Le	earning - Massachusetts Institute of Technology,	

https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

D -	MASTER IN PHYSICS	
Programme:		SEMESTERX PAPERIVe
	Subject:Physics	
Course code	CourseTitle: Condensed Matter Phys	ics -IV
	CourseOutcomes:	
	evelops the fundamental understanding of of various characterization	on techniques.
The course c	overs the in details X-ray diffraction, SEM, TEM etc.	
Credits:4		Core Compulsory
Max.Mark ExternalEx		Min.
Internalass		PassingMar ks:36
	ectures-Tutorials-Practical(inhoursperweek):4-0-0	K5.30
	cetteres - Eutomais-Fractical (Innoursperweek).4-0-0	
UNIT	ТОРІС	No. of Lecture
UNITI	Structural Characterization and Analysis: Introduction to	10. 01 Lecture. 15
	materials characterization, Bragg's Law, Generation and detection of X-rays, X-ray diffraction methods (XRD),	
	Determination of crystal structure, Lattice Parameter,	
	Crystallite Size, Lattice Strain measurements, Williamson Hall	
	Plot; Electron diffraction.	15
UNITII	Electron Microscopy and Surface Analysis:	15
	Interaction of electrons with solids, Scanning electron	
	microscopy (SEM), Transmission electron microscopy (TEM),	
	Scanning transmission electron microscopy (STEM), Scanning	
	Probe Microscope (SPM): Atomic force microscopy (AFM),	
	scanning tunneling microscopy (STM).	
UNITIII	Optical and Thermal Characterization:	15
	Optical Microscopy, UV/Visible spectroscopy, Fourier	
	Transform Infrared spectroscopy (FTIR), Atomic absorption	
	spectroscopy (AAS), Raman spectroscopy. Thermo gravimetric	
	analysis (TGA), Differential thermal analysis (DTA),	
	DifferentialScanning Calorimetry (DSC).	
UNITIV	Magnetic Characterization:	15
'	Spectroscopy Techniques: Basic of nuclear magnetic resonance	-
	(NMR) and electron spin resonance (ESR) spectroscopy,	
	Magnetic Measurements: Vibrating Sample Magnetometer	
	(VSM), Superconducting Quantum Interference Device	
	(SQUID), Magnetic Force Microscopy, Mössbauer	
	Spectroscopy.	
	SuggestedReadings	
Poole C P	Owens Jr. Frank J., Introduction to Nanotechnology, Wiley India	
vt. Ltd.		
	.K., Nanotechnology: Principles & Practices, Capital Publishing	
Company.		
· ·	nyay K.K. and Banerjee A. N., Introduction to Nanoscience and	
-	PHI Learning Private Limited.	
•••	Boysen E., Nanotechnology, John Wiley and Sons.	
	M., Nogi K., Naita M., Yokoyama T., Nanoparticle Technology	
	lsevier, 2007.	
Lande ook, D	<b>6.</b> Bhushan B., Springer Handbook of Nanotechnology,	

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
13. MITOpenLearning-	
MassachusettsInstituteofTechnology,https://openlearning.mit.e	
du/	
14. NationalProgrammeonTechnologyEnhancedLearning(NPTEL),	
https://www.youtube.com/user/nptelhrd	
15. SwayamPrabha -DTH	
Channel, https://www.swayamprabha.gov.in/index.php/program/curr	
ent_he/8	

MASTER IN PHYSICS				
Programm	e: MASTER IN PHYSICS YE		SEMESTER X PRACTICAL	
	Subject: Physics			
Course co	de Course Title: PRACTIC Course Outcomes:	CAL		
The stude	ent will have adequate knowledge to perform the experiment	nents of dif	ferent fields of	
	ith clear understanding of the theory behind the experim			
	vill know about advanced experiments based on their sp		n paper	
			i pupei:	
Credits: 4			Core	
Max. Marks: 100		Compulsory Min. Passing		
External Exam: 75		Marks: 36		
	assessment: 25 of Lectures-Tutorials-Practical (in hours per week): 0-0-4			
Total NO.				
UNIT	TOPIC		No. of Lectures	
	List of Experiments: (a) Advanced Electronics			
	1. Study of regulated power supply (723).			
	2. Study of operational amplifier (741).			
	3. Study of Timer (555). 4. A to D and D to A converter			
	5. 1 of 16 Decoder/Encoder			
	6. Study of Multiplexer/Demultiplexer			
	7. Study of Logic gates (Different types)			
	8. Study of Comparator and Decoder			
	9. Study of amplitude and frequency modulations	<b>C</b> 0		
	demodulations.		60	
	10. Study of different flip- flop circuits (RS, JK, Dk type, T-		`-	
	type, Master slave).			
	11. Study of Digital combinational and sequential cir			
	12. Study of Microprocessor (8085) 13. Study of SCF	R, DIAC,		
	TRIAC			
	14. Study of IC- Based Power supply			
	15. Microwave experiment.			
	16. Shift Registers			
	17. Fiber Optics communication			
	List of Experiments: (b) Astrophysics			
	1. Study of Hubble's law (from given data)			
	2. Study of constant density neutron star			
	3. Study of the static parameters of a Neutron Star			
	inverse square density distribution	60		
	4. Study of star cluster from a given data			
	5. Study of Extinction coefficients			

6. Study of variability of stars	
List of Experiments: (c) High Energy Physics	
1. Characteristic curve of a GM Detector and verification of	
inverse square law.	
2. Characteristic curve of a GM Detector and Absorption	
coefficient of a using aluminum GM Detector.	
3. Energy spectrum of gamma rays using gamma ray	
spectrometer.	60
4. Absorption coefficient of aluminum using gama-ray	00
spectrometer.	
spectometer.	
5. Characteristics of Scintillation Detector.	
6. Study of gama-gama unperturbed angular correlations.	
7. Study of particle tracks using a Nuclear Emulsion Detector.	
8. Classification of tracks in interaction with Nuclear Emulsion	
and determination of excitation energy.	
and determination of exertation energy.	
List of Experiments: (d) Spectroscopy	
1. Study of the vibrational levels of Iodine.	
2. Measurement of the fluorescence spectra of Uranyl Nitrate Hexahydrate.	
3. Determination of the intrinsic life time for a dye molecule.	60
4. Determination of change in dipole moment in excited state	
using Solvatochromic shift method.	
5. Measurement of non radiative decay rate for a known sample.	
6. Determination of the quantum yield of known samples using	
steady state spectroscopy.	
List of Experiments: (e) Condensed Matter Physics	
1. To determine the crystallite size of a nanomaterial using Debye	
Scherrer method	
2. To determine the band gap energy of a material	
<ol> <li>To determine the band gap energy of a material</li> <li>To undersatand the microstructural features of ceramics</li> </ol>	
3. To undersatand the microstructural features of ceramics	60
3. To undersatand the microstructural features of ceramics	60
<ol> <li>To undersatand the microstructural features of ceramics</li> <li>Study and analysis of FTIR spectra</li> </ol>	60
<ol> <li>To undersatand the microstructural features of ceramics</li> <li>Study and analysis of FTIR spectra</li> <li>To study I-V characteristics of a semiconductor</li> </ol>	60
<ol> <li>To undersatand the microstructural features of ceramics</li> <li>Study and analysis of FTIR spectra</li> <li>To study I-V characteristics of a semiconductor</li> <li>To study the surface morphology of a material be SEM</li> </ol>	60
<ol> <li>To undersatand the microstructural features of ceramics</li> <li>Study and analysis of FTIR spectra</li> <li>To study I-V characteristics of a semiconductor</li> <li>To study the surface morphology of a material be SEM</li> <li>Synthesis of nanoparticle using sol-gel method</li> <li>Determination of lattice parameters using XRD technique</li> </ol>	60
<ol> <li>To undersatand the microstructural features of ceramics</li> <li>Study and analysis of FTIR spectra</li> <li>To study I-V characteristics of a semiconductor</li> <li>To study the surface morphology of a material be SEM</li> <li>Synthesis of nanoparticle using sol-gel method</li> <li>Determination of lattice parameters using XRD technique</li> </ol>	60
<ol> <li>To undersatand the microstructural features of ceramics</li> <li>Study and analysis of FTIR spectra</li> <li>To study I-V characteristics of a semiconductor</li> <li>To study the surface morphology of a material be SEM</li> <li>Synthesis of nanoparticle using sol-gel method</li> <li>Determination of lattice parameters using XRD technique</li> </ol>	60
<ul> <li>3. To undersatand the microstructural features of ceramics</li> <li>4. Study and analysis of FTIR spectra</li> <li>5. To study I-V characteristics of a semiconductor</li> <li>6. To study the surface morphology of a material be SEM</li> <li>7. Synthesis of nanoparticle using sol-gel method</li> <li>8. Determination of lattice parameters using XRD technique</li> </ul> Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites	60
<ul> <li>3. To undersatand the microstructural features of ceramics</li> <li>4. Study and analysis of FTIR spectra</li> <li>5. To study I-V characteristics of a semiconductor</li> <li>6. To study the surface morphology of a material be SEM</li> <li>7. Synthesis of nanoparticle using sol-gel method</li> <li>8. Determination of lattice parameters using XRD technique</li> </ul> Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Bachelor in Science with Physics as major subject	60
3. To undersatand the microstructural features of ceramics         4. Study and analysis of FTIR spectra         5. To study I-V characteristics of a semiconductor         6. To study the surface morphology of a material be SEM         7. Synthesis of nanoparticle using sol-gel method         8. Determination of lattice parameters using XRD technique         Can be opted by         Bachelor in Science with Physics as major subject         Suggested Continuous Evaluation Methods:         Course Prerequisites         Bachelor in Science with Physics as major subject         Suggested Equivalent Online Courses:	60
<ul> <li>3. To undersatand the microstructural features of ceramics</li> <li>4. Study and analysis of FTIR spectra</li> <li>5. To study I-V characteristics of a semiconductor</li> <li>6. To study the surface morphology of a material be SEM</li> <li>7. Synthesis of nanoparticle using sol-gel method</li> <li>8. Determination of lattice parameters using XRD technique</li> </ul> Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Bachelor in Science with Physics as major subject 1. Virtual Labs at Amrita Vishwa Vidyapeetham,	60
<ul> <li>3. To undersatand the microstructural features of ceramics</li> <li>4. Study and analysis of FTIR spectra</li> <li>5. To study I-V characteristics of a semiconductor</li> <li>6. To study the surface morphology of a material be SEM</li> <li>7. Synthesis of nanoparticle using sol-gel method</li> <li>8. Determination of lattice parameters using XRD technique</li> </ul> Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Bachelor in Science with Physics as major subject Suggested Equivalent Online Courses: 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74	60
<ul> <li>3. To undersatand the microstructural features of ceramics</li> <li>4. Study and analysis of FTIR spectra</li> <li>5. To study I-V characteristics of a semiconductor</li> <li>6. To study the surface morphology of a material be SEM</li> <li>7. Synthesis of nanoparticle using sol-gel method</li> <li>8. Determination of lattice parameters using XRD technique</li> </ul> Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Bachelor in Science with Physics as major subject 1. Virtual Labs at Amrita Vishwa Vidyapeetham,	60
<ul> <li>3. To undersatand the microstructural features of ceramics</li> <li>4. Study and analysis of FTIR spectra</li> <li>5. To study I-V characteristics of a semiconductor</li> <li>6. To study the surface morphology of a material be SEM</li> <li>7. Synthesis of nanoparticle using sol-gel method</li> <li>8. Determination of lattice parameters using XRD technique</li> </ul> Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Bachelor in Science with Physics as major subject Suggested Equivalent Online Courses: 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74	60